首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electron ionization fragmentation patterns of 5-methyl-3-(o-, m- and p-tolyl)-1,2,4-oxadiazoles (1a—c) have been examined by metastable ion and high resolution mass spectrometry. The o-tolyl isomer loses CO and C2H2O from the metastable molecular ion whereas the m- and p-tolyl isomers lose only CH3CN thus indicating a strong ortho effect in directing the fragmentation in 1a. Slight differences between o-, m- and p-tolyl isomers in the collisional activation fragmentation of stable [C7H6N]+ ions suggest that structural differences exist even after a series of extensive rearrangements of the molecular ions. Metastable ion kinetic energy (MIKE) and collisional activation (CA) spectra were very helpful in providing valuable information about many fragments.  相似文献   

2.
The mass spectra of 1,2-diphenyl-pyrazolidine-3,5-dione and twenty-one 4-substituted derivatives are reported. Their fragmentation patterns have been studied by deuterium labelling, exact mass measurements, metastable studies by the defocusing technique and low energy spectra. Hydrogen rearrangements from the 4-position of the heterocycle and/or from the ß-position of the 4-substituent groups, lead to the main primary fragment ions [C12H11N2]+ (m/e 183) as shown by the metastables. The 4,4-d2 derivative shows an appreciable isotope effect even for molecular ions decomposing in the ion source. By comparison with the metastable abundances of competitive reactions, the molecular ions (m/e 252) of the 4-unsubstituted compound appear to be structurally different from the corresponding m/e 252 fragment ions formed from 4-derivatives by the loss of 4-substituent with H rearrangement. If only vinylic or aromatic hydrogen atoms are present, primary cleavage of the heterocyclic ring occurs with loss of OH·, C3O2 and C3HO2. Important rearrangements leading to elimination of C6H6N and C6H7N are typical for unsaturated substituents on position four having allylic hydrogen atoms. Fragment ions, identical to molecular ions of some compounds discussed here, are obtained by electron-impact and/or thermal decompostion of some complex compounds containing more than one 1,2-diphenyl-pyrazolidine-3,5-dione system. The [C6H5N2]+ (m/e 105) and [C6H5]+ (m/e 77) ions are common fragments of all the title compounds. Any hydrogen scrambling reactions between phenyl and heterocycle or 4-substituent groups can be excluded.  相似文献   

3.
The proton transfer equilibrium reactions involving 3-penten-2-one, 3-methyl-3-buten-2-one, crotonic acid and methacrylic acid were carried out in an ion cyclotron resonance (ICR) spectrometer. The semiempirical method MNDO, used to estimate the heats of formation for 14 protonated [C5H9O]+ and [C4H7O2]+ ions and the energetic aspect of the fragmentations of metastable [C6H12O]+. and [C6H12O2]+. ions, leads to the conclusion that the ions corresponding to protonation at the carbonyl oxygen are the most stable. Thus the experimentally determined heats of formation of protonated olefinic carbonyl compounds can be attributed to the following structures: [CH3COHCHCHCH3]+ (δHf = 490 KJ mol?1), [CH3COHC(CH3)CH2]+ (δHf = 502 KJ mol?1), [HOCOHCHCHCH3]+ (δHf = 330 KJ mol?1) and [HOCOHC(CH3)CH2]+ (δHf = 336 KJ mol?1).  相似文献   

4.
The chemical ionization mass spectra of five isomers of C3H6O (acetone, propionaldehyde, oxetane, propylene oxide and allyl alcohol) have been determined using a variety of reagent gases (H2, D2, N2/H2, CO2/H2 and CO/H2). The [C3H7O]+ ions produced by protonation of these isomers undergo very similar reactions to those reported for analogous [C3H7O]+ metastable ions; however, decomposing ions generated by chemical ionization appear to have somewhat higher internal energies. The results of 2H labelling studies (D2 reagent gas or labelled analogues of C3H6O) indicate that protonation occurs mainly on oxygen and are consistent with previous investigations of metastable oxonium ions. The protonated acetone ion is particularly stable, in agreement with the higher activation energies for fragmentation of this isomer than for other [C3H7O]+ structures. As the calculated heat of protonation of C3H6O is reduced by changing the reagent gas, so the extent to which fragmentation occurs decreases. This is discussed in the context of competition between fragmentation and collisional stabilization of the excited [C3H7O]+* ion. It is concluded that on average a large fraction (approaching 1) of the exothermicity of the protonation reaction resides in the [C3H7O]+* ions produced initially.  相似文献   

5.
[C13H9S]+, [C14H11]+, [C13H11]+ and [C8H7S]+ ions with unknown structures were generated from two [C14H12S]precursor ions by fragmentation reactions that must be preceded by extensive rearrangements. Ions with the same compositions, each with several initial structures, were prepared by simple bond-breaking reactions. Metastable characteristics were compared for each of the four types of ions. It was found than in all cases fast isomerization reactions occur prior to fragmentation, so that no information about the unknown ion structures could be obtained by comparison of the observed fragmentations of metastable ions.  相似文献   

6.
The [CH3O?CHCH3]+ ions observed in the mass spectra of ethers of formula CH3OCH (CH3)R(R = H or alkyl) undergo two rearrangement fragmentation reactions to form [C2H5]+ and [CH2OH]+. The scope of the rearrangements has been investigated and it is shown that enlargement of the alkyl group on either side of the ether linkage leads to alternative fragmentation routes. From a study of metastable intensities it is concluded that the fragmentations probably occur directly from the [CH3O?CHCH3]+ structure through four centred rearrangements rather than through the intermediacy of the [C2H5O?CH2]+ ion.  相似文献   

7.
The major metal-containing species formed upon fast atom bombardment of amino acid/Ni+2 mixtures is the [M + Ni]+ adduct, involving reduction of the Ni+2 to the +1 oxidation state. By contrast, electrospray ionization of amino acid/Ni+2 mixtures produces predominantly [Ni(M ? H)M]+; this species, on collisional activation, produces predominantly [M + Ni]+ by elimination of [M - H], presumably a carboxylate radical. The unimolecular fragmentation reactions occurring on the metastable ion time scale for the [M + Ni]+ adducts of a variety of α-amino acids have been recorded. The adducts with phenylalanine, α-aminoisobutyric acid and α-aminobutyric acid fragment by elimination of H2O, H2O + CO and, to a minor extent, by elimination of CO2. These reactions are similar to those observed for the [M + Cu]+ adducts of α-amino acids. A reaction distinctive for the [M + Ni]+ adducts involves formation of the immonium ion RCH=NH 2 + . By contrast, the [M + Ni]+ adducts with leucine, isoleucine, and norleucine show extensive metastable ion fragmentation by elimination of H2, CH4, C2H4, C3H6, and C4H8, with the relative importance of the different fragmentation channels depending on the configuration of the C4H9 side chain. These results are interpreted in terms of C-C and C-H bond activation of the C4H9 side chain by the Ni+. The adducts with valine and norvaline fragment in a fashion similar to the adduct with phenylalanine, except that minor elimination of C3H6 is observed.  相似文献   

8.
A detailed energy-resolved study of the fragmentation of CH2?CHCH(OH)CD2CD3 (1-d5) has been carried out using metastable ion studies and charge exchange techniques, combined with collision-induced dissociation studies to establish the structures of fragment ions. At low internal energies (metastable ions) the molecular ion of 1-d5 rearranges to the 3-pentanone structure and fragments by loss of C2H5 or C2D5 leading to the acyl structure, [CH3CH2C?O]+ or [CD3CD2C?O]+, for the fragment ion. However, with increasing internal energy of the molecular ion this rearrangement process decreases rapidly in importance and loss of C2D5 by direct cleavage, leading to [CH2?CHCH?OH]+, becomes the dominant fragmentation reaction. As a result the [C3H5O]+ ion seen in the electron impact mass spectrum of 1-penten-3-ol has predominantly the protonated acrolein structure.  相似文献   

9.
The doubly-protonated peptides Ala-Ala-Xaa-Ala-Ala-Ala-Arg show extensive loss of H2O when Xaa = Ser or Thr. Using quasi-MS3 techniques the fragmentation reactions of the [M + 2H – H2O]+2 ions have been studied in detail. For both Ser and Thr, the [M + 2H – H2O]+2 ions show three primary fragmentation reactions, elimination of CH3CH = NH, elimination of one Ala residue, and elimination of two Ala residues, in all cases forming doubly-charged products. From a study of the further fragmentation of these products, it is concluded that elimination of two Ala residues results in formation of a three-membered aziridine ring by interaction with the adjacent amide function as H2O is lost. The elimination of one Ala residue results in formation of a five-membered oxazoline ring through interaction with the N-terminal adjacent carbonyl function as H2O is lost. The elimination of CH3CH = NH appears to involve formation of an eight-membered ring by interaction with the remote N-terminal carbonyl function as H2O is lost. However, this initial structure undergoes rearrangement through interaction with the adjacent C-terminal carbonyl function prior to further fragmentation. The [MH – H2O]+ ion of Ala-Ala-Ser-Ala-Ala-Ala also shows elimination of CH3CH = NH, one Ala residue and two Ala residues.  相似文献   

10.
In order to establish the mechanism of CO loss occurring during metastable decomposition of protonated 1-indanone, fragmentations of monocyclic [C9H9O]+ isomers have been studied. These ions of known structure were prepared by CI protonation and fragmentation of the corresponding acids chlorides. It is demonstrated that the wide component of the [MH? CO]+ metastable peak induced by protonated 1-indanone fragmentation is the result of fragmentation of the [C6H5CH2CH2CO]+ isomer ion.  相似文献   

11.
We investigated the gas‐phase fragmentation reactions of a series of 2‐aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The most intense fragment ions were the acylium ions m/z 105 and [M+H–C6H6]+, which originated directly from the precursor ion as a result of 2 competitive hydrogen rearrangements. Eliminations of CO and CO2 from [M+H–C6H6]+ were also common fragmentation processes to all the analyzed compounds. In addition, eliminations of the radicals •Br and •Cl were diagnostic for halogen atoms at aromatic ring A, whereas eliminations of •CH3 and CH2O were useful to identify the methoxyl group attached to this same ring. We used thermochemical data, obtained at the B3LYP/6‐31+G(d) level of theory, to rationalize the fragmentation pathways and to elucidate the formation of E , which involved simultaneous elimination of 2 CO molecules from B .  相似文献   

12.
The fragmentation of the dimethyl and diethyl esters of maleic and fumaric acids have been studied as a function of the internal energy of the molecular ions using charge exchange techniques and metastable ion studies in combination with isotopic labelling. The dimethyl ester molecular ions show distinctive behaviours at both low and high internal energies, indicating that interconversion of the molecular ions does not occur. The fumarate molecular ion fragments by elimination of CH2O and (CO2 + CH3) in the metastable ion time-frame, while the maleate ester fragments primarily by loss of CH3O. At higher internal energies both molecular ions fragment primarily by loss of CH3O but the fragment ion from the maleate ester shows a greater stability, presumably because it assumes the cyclic cationated maleic anhydride structure. The diethyl maleate and diethyl fumarate molecular ions show identical metastable ion characteristics; in addition the [COS]+· charge exchange mass spectra are very similar. These results indicate that low-energy molecular ions interconvert. At higher internal energies interconversion does not occur, and, although both moiecular ions fragment by loss of C2H5O, the resultsint fragment ions show different stabilities and fragmentation reactions.  相似文献   

13.
The mass spectra of six-membered saturated heterocycles containing oxygen, sulphur, selenium and tellurium in the 1,4-positions have been measured. The differing fragmentation modes have been characterized using high resolution, low voltage and metastable ion scan techniques. The important decomposition reactions of the molecular ions involve elimination of C2H4 and CH2X (X is a chalcogen atom) and formation of [C2H4X]+ and C2H5+. The propensities of these reactions vary systematically as a function of the ability of the chalcogen to stabilize a positive charge.  相似文献   

14.
The mass spectra of 5,6,6a,7,12,12a-hexahydrobenzo[a]anthracene and 2-methoxy, 3-methoxy-, 4-methoxy and 1-methyl-4-methoxy derivatives are reported. Among the fragment ions observed under electron impact ionization, [C8H8] and [M? C8H8] can be generated by a retro-Diels-Alder process. Studies of metastable ion reactions show these ions to be formed by fragmentation directly from the molecular ion. The CA spectra of the [C8H8] ions from the subject compounds were compared with spectra from ions of the same composition from various sources. From these data, kinetic energy release measurements and stereochemical considerations, it is concluded that these ions are formed by a stepwise, rather than a concerted mechanism.  相似文献   

15.
The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier.  相似文献   

16.
The loss of a hydrogen atom from ionized 2-methylpropanenitrile is preceded by a drastic rearrangement of the molecular ion. The result of this fragmentation is the generation of two stable structurally different [C4H6N]+ ions, formed via different pathways. Their structures can be established by a careful comparison of the metastable ion spectra, collision activation spectra, and charge stripping spectra from the compound and its three deuterium labeled analogues and from [C4H6N]+ ions generated from reference compounds via electron impact ionization or in selected ion/molecule reactions.  相似文献   

17.
The effect of changes in the internal energy distribution of the fragmenting ion on the ratio of metastable ion intensities for two competing fragmentation reactions has been investigated both theoretically and experimentally. Model calculations have shown that if the competing reactions have significantly different activation energies the metastable intensity ratio does depend on the internal energy distribution although large changes are necessary before the ratio changes by more than a factor of two. Experimentally the metastable characteristics of [C3H7O]+ ions of nominal structures [CH3CH2O+?CH2] (I), [(CH3)2C?O+H] (II), [CH3CH2CH?O+H] (III) and [CH3O+?CHCH3] (IV) have been examined. For each structure the metastable characteristics are found to be distinctive and independent of changes in the internal energy distribution of the fragmenting ion where these changes result from altering the precursor of the [C3H7O]+ ions. It is suggested that these internal energy changes can be estimated from the fraction of [C3H7O]+ ions which fragment in the ion-source. It is concluded that structures I to IV represent stable and distinct ionic structures.  相似文献   

18.
Translational energy release measurments on metastable ions are used in the comparison of the structures of isomeric ions. Metastable ions, m2+, formed from m1+ ions as the result of a high energy process in the ion source are compared with isomeric metastable ions formed as daughters from fragmentation of metastable m1+ ions in a field. In the case of o-, m- and p-nitrophenol the structure of the [C5H5O]+ ions formed from [C6H5O]+ ions by these two independent methods is different as verified by comparison of the behaviour of [C5H5O]+ ions formed from several other compounds.  相似文献   

19.
The mutual interconversion of the molecular ions [C5H6O]+ of 2-methylfuran (1), 3-methylfuran (2) and 4H-pyran (3) before fragmentation to [C5H5O]+ ions has been studied by collisional activation spectrometry, by deuterium labelling, by the kinetic energy release during the fragmentation, by appearance energles and by a MNDO calculation of the minimum energy reaction path. The electron impact and collisional activation mass spectra show clearly that the molecular ions of 1–3 do not equilibrate prior to fragmentation, but that mostly pyrylium ions [C5H5O]+ arise by the loss of a H atom. This implies an irreversible isomerization of methylfuran ions 1 and 2 into pyran ions before fragmentation, in contrast to the isomerization of the related systems toluene ions/cycloheptatriene ions. Complete H/D scrambling is observed in deuterated methylfuran ions prior to the H/D loss that is associated with an iostope effect kH/kD = 1.67–2.16 for metastable ions. In contrast, no H/D scrambling has been observed in deuterated 4H-pyran ions. However, the loss of a H atom from all metastable [C5H5O]+ ions gives rise to a flat-topped peak in the mass-analysed ion kinetic energy spectrum and a kinetic energy release (T50) of 26 ± 1.5 kJ mol?1. The MNDO calculation of the minimum energy reaction path reveals that methylfuran ions 1 and 2 favour a rearrangement into pyran ions before fragmentation into furfuryl ions, but that the energy barrier of the first rearrangement step is at least of the same height as the barrier for the dissociation of pyran ions into pyrylium ions. This agrees with the experimental results.  相似文献   

20.
The metastable peak intensity ratios for elimination of HNC vs DNC from the [M ? CO]+· ion of deuterium labelled analogues of formanilide show that the formyl hydrogen atom migrates to nitrogen prior to or during CO expulsion to form a [C6H7N]+· ion of aniline-like structure. An examination of metastable peaks does not allow similar conclusions to be reached for methyl substituted formanilides. Low abundance [C6H6O] ions are formed by HNC elimination from the formanilide molecular ion in a reaction where three covalent bonds to the formyl carbon are broken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号