首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In the hydrated adduct N,N′‐di­methyl­piperazine‐1,4‐diium bis(3‐carboxy‐2,3‐di­hydroxy­propanoate) dihydrate, [MeNH(CH2CH2)2NHMe]2+·2(C4H5O6)?·2H2O or C6H16N22+·2C4H5O6?·2H2O, formed between racemic tartaric acid and N,N′‐di­methyl­piperazine (triclinic P, Z′ = 0.5), the cations lie across centres of inversion. The anions alone form chains, and anions and water mol­ecules together form sheets; the sheets are linked by the cations to form a pillared‐layer framework. The supramolecular architecture thus takes the form of a family of N‐dimensional N‐component structures having N = 1, 2 or 3.  相似文献   

2.
The compounds 5,6‐dihydro‐4H‐imidazo[4,5‐c][1,2,5]oxadiazole ( 3a , R?H), 4,6,10,12‐tetramethyl‐5,6,11,12‐tetrahydro‐4H,10H‐bis(1,2,5)oxadiazolo[3,4‐d:3′,4′‐I][1,3,6,8]tetraazecine ( 4b , R?CH3), N3,N3′‐methylenebis‐3,4‐diamino‐1,2,5‐oxadiazole ( 5a , R?H) and N3,N3′‐methylenebis(N,N′‐dimethyl‐3,4‐diamino‐1,2,5‐oxadiazolee) ( 5b , R?CH3) were synthesized from the reaction of formaldehyde with 3,4‐diamino‐1,2,5‐oxadiazole and N,N′‐3,4‐dimethylamino‐1,2,5‐oxadiazole in an acetonitrile.  相似文献   

3.
Condensation of 1,3-diaminopropane-2-ol with diacetylmonoxime, acetylacetone, salicylaldehyde and orthohydroxyacetophenone yielded the tetradentate Schiff bases N,N′-(2-hydroxy)propylenebis{(2-imino-3-oximino)butane} (H2dampnol), N,N′-(2-hydroxy)propylenebis(acetylacetoneimine) (H2acacpnol), N,N′-(2-hydroxy)propylenebis-(salicyalaldimine) (H2salpnol) and N,N′-(2-hydroxy)propylenebis(7-methylsalicylaldimine) (H2ohacpnol), respectively. The ligands form complexes with oxovanadium(IV), vanadium(IV) and oxovanadium(V) salts. Some mixed ligand complexes involving σ-bonded phenyl and benzyl radical along with tetradentate ligand, H2L (where, H2L stands for H2dampnol, H2acacpnol, H2salpnol or H2ohacpnol) of the types [(L)V(C6H5)2]CH3OH and [(L)V(CH2Ph)2]CH3OH have been synthesized, characterized and also provide the syntheses of some new organovanadium(IV) complexes. Silylation coupled with desilylation have been employed as a route to new organovanadium(IV) complexes. All the complexes have been characterized with the help of elemental analyses, molar conductance values, molecular weights, magnetic moments and spectroscopic (IR, UV-Vis, ESR) data.  相似文献   

4.
A new family of nickel(II) complexes of the type [Ni(L)(CH3CN)](BPh4)2, where L=N‐methyl‐N,N′,N′‐tris(pyrid‐2‐ylmethyl)‐ethylenediamine (L1, 1 ), N‐benzyl‐N,N′,N′‐tris(pyrid‐2‐yl‐methyl)‐ethylenediamine (L2, 2 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(6‐methyl‐pyrid‐2‐yl‐methyl)‐ethylenediamine (L3, 3 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(quinolin‐2‐ylmethyl)‐ethylenediamine (L4, 4 ), and N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐imidazole‐2‐ylmethyl)‐ethylenediamine (L5, 5 ), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single‐crystal X‐ray structure of [Ni(L3)(CH3CN)](BPh4)2 reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one‐electron oxidation corresponding to the NiII/NiIII redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m‐CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1–10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH3CN)](BPh4)2 by the strongly σ‐bonding but weakly π‐bonding imidazolylmethyl arm as in [Ni(L5)(CH3CN)](BPh4)2 or the sterically demanding 6‐methylpyridylmethyl ([Ni(L3)(CH3CN)](BPh4)2 and the quinolylmethyl arms ([Ni(L4)(CH3CN)](BPh4)2, both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin‐state reactivity for the high‐spin [(N5)NiII?O.] intermediate (ts1hs, ts2doublet), which has a low‐spin state located closely in energy to the high‐spin state. The lower catalytic activity of complex 5 is mainly due to the formation of thermodynamically less accessible m‐CPBA‐coordinated precursor of [NiII(L5)(OOCOC6H4Cl)]+ ( 5 a ). Adamantane is oxidized to 1‐adamantanol, 2‐adamantanol, and 2‐adamantanone (3°/2°, 10.6–11.5), and cumene is selectively oxidized to 2‐phenyl‐2‐propanol. The incorporation of sterically hindering pyridylmethyl and quinolylmethyl donor ligands around the NiII leads to a high 3°/2° bond selectivity for adamantane oxidation, which is in contrast to the lower cyclohexane oxidation activities of the complexes.  相似文献   

5.
Novel L ‐alanine and L ‐glutamic acid derivatized, carbazole‐containing N‐propargylamides [N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide and N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] were synthesized and polymerized with (nbd)Rh+6‐C6H5B?(C6H5)3] (nbd = norbornadiene) as a catalyst to obtain the corresponding polymers with moderate molecular weights in high yields. Polarimetry, circular dichroism, and ultraviolet–visible spectroscopy studies revealed that both poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] took a helical structure with a predominantly one‐handed screw sense in tetrahydrofuran, CHCl3, and CH2Cl2. The helix content of poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] could be tuned by heat or the addition of a protic solvent, and the helical sense of poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] was inverted by heat in CHCl3 or in mixtures of tetrahydrofuran and CH2Cl2. Poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] also took a helical structure in film states. They showed small fluorescence in comparison with the monomers and redox activity based on carbazole. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 253–261, 2007  相似文献   

6.
Phosphoric triamides have extensive applications in biochemistry and are also used as O‐donor ligands. Four new mixed‐amide phosphoric triamide structures, namely racNtert‐butyl‐N′,N′′‐dicyclohexyl‐N′′‐methylphosphoric triamide, C17H36N3OP, (I), racN,N′‐dicyclohexyl‐N′‐methyl‐N′′‐(p‐tolyl)phosphoric triamide, C20H34N3OP, (II), N,N′,N′′‐tricyclohexyl‐N′′‐methylphosphoric triamide, C19H38N3OP, (III), and 2‐[cyclohexyl(methyl)amino]‐5,5‐dimethyl‐1,3,2λ5‐diazaphosphinan‐2‐one, C12H26N3OP, (IV), have been synthesized and studied by X‐ray diffraction and spectroscopic methods. Structures (I) and (II) are the first diffraction studies of acyclic racemic mixed‐amide phosphoric triamides. The P—N bonds resulting from the different substituent –N(CH3)(C6H11), (C6H11)NH–, 4‐CH3‐C6H4NH–, (tert‐C4H9)NH– and –NHCH2C(CH3)2CH2NH– groups are compared, along with the different molecular volumes and electron‐donor strengths. In all four structures, the molecules form extended chains through N—H…O hydrogen bonds.  相似文献   

7.
The N,N,N′-trimethylethylenediaminetetrafluorophosphate, 4 , was formed in the unusual reaction of N,N,N′-trimethyl-N′-trimethylsilylethylenediamine, 1 , with the N P-bonded tetrafluorophosphoranes, dimethylaminotetrafluorophosphorane, 2 , or morpholinotetrafluorophosphorane, 3 . There was no evidence for the cleavage of a P F bond in the tetrafluorophosphoranes (with formation of Me3SiF); instead, the Si N compounds, R2N SiMe3 (R2 = Me2 or O(CH2CH2)2) were formed. The 19F and 31P NMR spectra of 4 at room temperature indicated dynamic behavior. The X-ray crystal structure analysis of 4 revealed the presence of a five-membered ring, formally as a result of intramolecular donor–acceptor interaction (P N = 196.5 pm) between the nitrogen atom of the Me2N group and phosphorus.  相似文献   

8.
Proton-coupled nitrogen-15 NMR spectra of urea, N-methylurea, N,-N′-dimethylurea, N-methyl-N′-benzylurea and N-phenylurea have been obtained at natural abundance level in neutral, basic and acidic solutions at 25°C. Base-catalyzed N? H proton exchange of the ? NH2 group of N-methylurea in water was found to be 1.5 times faster than that for the -NH- group, while the corresponding acid-catalyzed exchange is 7.5 times faster. Comparison of urea and N,-N′-dimethylurea in water shows urea to be 10 times faster in base but 2 times slower in acid. The ratio of the base-catalyzed N? H proton exchanges of the two -NH- groups of N-methyl-N′-benzylurea in dimethyl sulfoxide is close to unity, whereas the CH3NH- group exchanges 4 times faster in acid. Similarly, the C6H5NH- group of N-methyl-N′-phenylurea exchanges 50 times faster than the CH3NH- group in base and about 3 orders of magnitude slower in acid. The results are rationalized by consideration of steric and electronic effects.  相似文献   

9.
catena‐Poly[[[dichloridoiron(II)]‐μ‐N,N′‐bis(2‐pyridylmethylene)benzene‐1,4‐diamine] methanol disolvate], [FeCl2(C18H14N4)]·2CH3OH, forms a one‐dimensional coordination polymer. The polymeric chains run parallel to the c axis. O—H...Cl—Fe and C—H...O hydrogen‐bonding interactions with methanol solvent molecules stabilize the open supramolecular framework. Each FeII atom adopts an octahedral geometry coordinated by four N atoms from two N,N′‐bis(2‐pyridylmethylene)benzene‐1,4‐diamine ligands and completed by two cis Cl atoms. The compound has C2 (and Ci) molecular symmetry, which is coincident with the crystallographic twofold symmetry at (0, y, ). The one‐dimensional structure is propagated via the crystallographic inversion center located at the benzene ring centroid (0, , 0).  相似文献   

10.
In the solid state, 4‐methoxy‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H10Cl3N3O, (I), N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H8Cl3N3, (II), 4‐chloro‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7Cl4N3, (III), 4‐bromo‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7BrCl3N3, (IV), and 4‐trifluoromethyl‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H7Cl3F3N3, (V), display strong intramolecular N—H...N hydrogen bonding across the chelate ring and also intramolecular N—H...Cl contacts. Additional intermolecular hydrogen bonds link the molecules into chains, double chains or sheets in all cases except for compound (V). For compound (II), there are three independent molecules per asymmetric unit.  相似文献   

11.
Abstract

The synthesis and the chemical, physical and spectral properties of N-aminoglyphosate ethylester (hydrazino-N′-carbethoxymethyl-N′-methylphosphonic acid) 4a, H2OPCH2N(NH2)CH2CO2C2H5, of hydrazino-N′-carbethoxymethyl-N′-methyl-P-methylphosphinic acid 4b, CH3(HO2)PCH2N(NH2)-CH2CO2C2H5, and of azaglyphosate ethylester (hydrazino-N-carbethoxymethyl-N-methyl-phosphonic acid 9, H2O3PCH2NHNHCH2CO2C2H5, are described. 4a, 9 and 10 exhibit plant growth regulating properties.  相似文献   

12.
Treatment of N,N′‐bis(aryl)formamidines (ArFormH), N,N′‐bis(2,6‐difluorophenyl)formamidine (DFFormH) or N,N′‐bis(2,6‐diisopropylphenyl)formamidine (DippFormH), with europium metal in CH3CN is an efficient synthesis of the divalent complexes: [{Eu(DFForm)2(CH3CN)2}2] ( Eu1 ) or [Eu(DippForm)2(CH3CN)4] ( Eu2 ). The synthetic method was extended to ytterbium, but the metal required activation by addition of Hg0. With DFFormH in CH3CN, [{Yb(DFForm)2(CH3CN)}2] ( Yb1 ) was obtained in good yield, and [Yb(DFForm)2(thf)3] ( Yb3 ) was obtained from a synthesis in CH3CN/THF. Thus, this synthetic method completely circumvents the use of either salt metathesis, or redox transmetallation/protolysis (RTP) protocols to prepare divalent rare‐earth formamidinates. Heating Yb1 in PhMe/C6D6 resulted in decomposition to trivalent products, including one from a CH3CN activation process. For a synthetic comparison, divalent ytterbium DFForm and DippForm complexes were synthesised by RTP reactions between Yb0, Hg(R)2 (R=Ph, C6F5), and ArFormH in THF, leading to the isolation of either [Yb(DFForm)2(thf)3] ( Yb3 ), or the first five coordinate rare‐earth formamidinate complex [Yb(DippForm)2(thf)] ( Yb4 b ), and, from adjustment of the stoichiometry, trivalent [Yb(DFForm)3(thf)] ( Yb6 ). Oxidation of Yb3 with benzophenone (bp), or halogenating agents (TiCl4(thf)2, Ph3CCl, C2Cl6) gave [Yb(DFForm)3(bp)] or [Yb(DFForm)2Cl(thf)2], respectively. Furthermore, the structural chemistry of divalent ArForm complexes has been substantially broadened. Not only have the highest and lowest coordination numbers for divalent rare‐earth ArForm complexes been achieved in Eu2 and Yb4 b , respectively, but also dimeric Eu1 and Yb1 have highly unusual ArForm bridging coordination modes, either perpendicular μ‐1κ(N:N′):2κ(N:N′) in Eu1 , or the twisted μ‐1κ(N:N′):2κ(N′:F′) DFForm coordination in Yb1 , both unprecedented in divalent rare‐earth ArForm chemistry and in the wider divalent rare‐earth amidinate field.  相似文献   

13.
The molecules of 2,2,2‐trichloro‐N,N′‐diphenylethane‐1,1‐diamine, C14H13Cl3N2, are linked into (040) sheets by a combination of C—H...Cl and C—H...π(arene) hydrogen bonds. In 2,2,2‐trichloro‐N,N′‐bis(4‐methylphenyl)ethane‐1,1‐diamine, C16H17Cl3N2, the molecules are linked into C(7) chains by two independent C—H...Cl hydrogen bonds and one Cl...Cl contact.  相似文献   

14.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

15.
Two new uranyl complexes [UO2(DPDPU)2(NO3)2](C6H5CH3) (1) and [UO2(PMBP)2 (DPDPU)](CH3C6H4CH3)0.5 (2), (DPDPU?=?N,N′-dipropyl-N,N′-diphenylurea, HPMBP?= 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized. The coordination geometry of the uranyl atom in 1 is distorted hexagonal bipyramidal, coordinated by two oxygen atoms of two DPDPU molecules and four oxygen atoms of two bidentate nitrate groups. The coordination geometry of the uranyl atom in 2 is distorted pentagonal bipyramidal, coordinated by one oxygen atom of one DPDPU molecule and four oxygen atoms of two chelating PMBP molecules.  相似文献   

16.
The stoichiometric reaction of 1,10‐phenanthroline (phen), imino­di­acetic acid (IDA‐H2) and Cu(ClO4)2 in a H2O–CH3OH (2:1) solution yields μ‐imino­diacetato‐2:1κ4O,N,O′:O′′‐tris(1,10‐phenanthroline)‐1κ4N,N′;2κ2N,N′‐dicopper(II) diperchlorate methanol solvate, [Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH3OH. The IDA ligand bridges the two CuII ions via a carboxyl­ate group and uses one further N and an O atom of the second carboxylate group to complete a fac‐tridentate coordination at one Cu centre. A phen ligand completes a distorted square‐pyramidal coordination at this metal atom, although there is weak coordination by a perchlorate O atom at a sixth position. The second Cu centre has a distorted trigonal–bipyramidal coordination to two phen moieties and a carboxyl­ate O atom.  相似文献   

17.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

18.
The new compound C10H6P(S)[NSi(CH3)3]2P(S) ( 3 ) which contains a P2N2 heterocycle has been prepared in low yield by partial thermal decomposition of 1-{[N,N′-bis(trimethylsilyl)acetamidinium]sulfido}-3-(trimethylsilylamino)-1 H,3 H,1 λ5,3 λ5-naphtho[1,8 a,8-cd][1,2,6]thiadiphosphinine-1,3-dithione [CH3C{NHSi(CH3)3}2]+[C10H6P(S)(NHSiMe3)SP(S)2] ( 2 ). Reaction of 2 with potassium hydroxide in acetonitrile gives the completely desilylated product [CH3C(NH2)2]+[C10H6P(S)(NH2)SP(S)2] ( 4 ). The structures of the new compounds 3 and 4 were elucidated by FTIR and NMR spectroscopy methods and by X-ray structure analyses.  相似文献   

19.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

20.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号