首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The syntheses of the zwitterionic spirocyclic λ5Si-silicates 6–9 are described. These chiral zwitterions contain a pentacoordinate (formally negatively charged) silicon atom and a tetracoordinate (formally positively charged) nitrogen atom. Compounds 6 · 1/2 HO(CH2)2OH, 7 , 8 · CH3CN, and 9 were studied by solution-state (1H, 13C, 29Si) and solid-state (29Si CP/MAS) NMR experiments. In addition, all compounds were structurally characterized by single-crystal X-ray diffraction. The dynamic behavior (Berry-type enantiomerization) of 7–9 in solution was studied by VT 1H NMR experiments. These experimental studies were completed by ab initio investigations of the related anionic model species 10–12 .  相似文献   

2.
Mono- and Dinuclear MoII Phthalocyaninates(2–): Syntheses and Properties of Bis(cyano)phthalocyaninato(2–)molybdate(II) and Bis(phthalocyaninato(2–)molybdenum(II)) Blue diamagnetic bis(phthalocyaninato(2–)molybdenum(II)) is synthezied by reduction of oxophthalocyaninato(2–)molybdenum(IV) with boiling triphenylphosphine. The Mo–Mo stretching vibration ist observed in the resonance Raman spectrum at 374 cm–1. It is chemically inert and dissolves in conc. sulfuric acid without decomposition. It reacts with molten tetra(n-butyl)ammonium cyanide to yield redbrown paramagnetic bis[tetra(n-butyl)ammonium] biscyanophthalocyaninato(2–)molybdate(II) (μeff = 3.15 μB; S = 1). The complex salt is very instable and demetallizes in solution. In the extraordinary UV-VIS-NIR spectrum an intense trip-triplet transition at 7780 cm–1 together with a very structured B region between 14000 and 21000 cm–1 of comparable absorbance is observed.  相似文献   

3.
4.
The crystal structures of uncharged tetrahedral dithiocyanato zinc complexes with N-methylated ethylenediamines have been determined with a view to a study of intermolecular hydrogen-bonding interactions in these compounds. It is found that the H(N) hydrogen atoms are exhaustively engaged in N–H(N) … S bonds. The majority of these bonds are branched (bifurcated or trifurcated), and the hydrogen-bond systems they form all contain one of the two characteristic primitive core motifs: either a discrete centrosymmetric […S…H…]2 dimer or an infinite […S…H…] helix about a 21 or pseudo-21 axis. The hydrogen bonding is analyzed in detail, with particular attention to the existence of correlations between the N–H(N)–S angles and the H(N) … S distances as well as between the corresponding N–H(N)–S/H(N)…S pairs in the bifurcated N–H(N)…2 S bonds.  相似文献   

5.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

6.
The structure of the title compound, C6H10O6, was determined to confirm the position of the keto group in the mol­ecule prepared enantioselectively by a bioconversion from myo‐inositol. There are two independent mol­ecules showing similar geometry.  相似文献   

7.
The reaction of [(thf)4Ca(PPh2)2] ( 1 ) with diisopropyl– and dicyclohexylcarbodiimides yields the phospha(III)guanidinates [(thf)2Ca{RNC(PPh2)NR}2] with R = isopropyl ( 2 ) and cyclohexyl ( 3 ). The metathesis reaction of K{RNC(PPh2)NR} with anhydrous CaI2 also allows the synthesis of these phospha(III)guanidinate complexes 2 and 3 . For 2 a cis arrangement is observed whereas 3 crystallizes as trans isomer. The phospha(III)guanidinates act as bidentate chelate bases with an average Ca–N distance of 242.5 pm. The C–P bond length between the PPh2 fragment and the 1,3–diazaallyl unit is with values above 190 pm very large. The complexes 2 and 3 show a moderate catalytic activity in hydrophosphanylation reactions of dialkylcarbodiimides with diphenylphosphane.  相似文献   

8.
Tetra(n-butyl)ammonium Phthalocyaninato(2–)lithate Tetrahydrofurane and Bis(tetra(n-butyl)ammonium) Phthalocyaninato(2–)lithate Fluoride Hydrate; Synthesis and Crystal Structure Dilithiumphthalocyaninate(2–) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate to yield a mixture of blue tetra(n-butyl)ammonium phthalocyaninato(2–)lithate tetrahydrofurane and bis(tetra(n-butyl)ammonium) phthalocyaninato(2–)lithate fluoride hydrate. The latter crystallizes triclinic with crystal data: a = 8.6480(1) Å; b = 12.620(2) Å; c = 14.866(5) Å; α = 82.44(2)°; β = 87.01(2)°; γ = 75.02°; space group P1 ; Z = 1. Fluoride is not coordinated to lithium. On the contrary, a double-salt is formed, which consists of alternating layers of cations and anions. This arrangement opens a cavity in the centre of the unit cell which shares statistically a fluoride and a disordered fluoride hydrate. Pure tetra(n-butyl)ammonium phthalocyaninato(2–)lithate is obtained as a tetrahydrofurane solvate by the reaction of dilithiumphthalocyaninate(2–) with tetra(n-butyl)ammonium bromide in tetrahydrofurane. The solvate crystallizes monoclinic with crystal data: a = 12.455(5) Å; b = 23.396(5) Å; c = 16.120(5) Å; β = 94.986(5)°; space group P2/c1; Z = 4.  相似文献   

9.
10.
11.
The behavior of cupric dipivaloylmethide in vinyl polymerization systems was investigated with a view to understanding the mechanism of polymerization initiation. Results of polymerization reactions together with spectral investigation data are presented. Polymerization in the presence of the chelate proceeds through a free-radical process. The corresponding kinetic and transfer constants and activation energy values suggest a normal propagation step. With the help of spectral data an attempt is made to suggest a plausible mechanism of initiation.  相似文献   

12.
13.
14.
15.
The synthesis, characterization and electrochemical polymerization, along with redox switching behavior of the resultant polymers, of 1,4-bis(2-(3,4-ethylenedioxy)thienyl)–2,5-difluorobenzene ( 1 ) and 1,4-bis(2-thienyl)–2,5-difluorobenzene ( 2 ) is presented. Compounds 1 and 2 were synthesized by a Pd°-catalyzed cross-coupling and in good yields (85% and 84%, respectively). Both monomers electropolymerize to form electroactive redox switchable films, with the more electron-rich 3,4-ethylenedioxythiophene derivative polymerizing and switching at lower potentials. The electronic band gaps were determined to be 1.9 eV for P1 and 2.3 eV for P2. Thin films of P1 and P2 were found to be electrochromic and exhibit color changes of red-to-blue/black for P1 and yellow-to-black for P2. These results are compared with various substituted bis(heterocycle)benzene derivatives in order to present a series of structure to property relationships. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

18.
(CH3)2SBr2 – Reactions and Structures (CH3)2SBr2 ( 1 ) is a donor acceptor complex (8-S-3 + 10-Br-2) which reacts with (CH3)2S(?O)NSi(CH3)3 to yield [(CH3)2S(O)?N? S(CH3)2]+Br? ( 2 ). With SbBr3 (CH3)2SBr+SbBr4? ( 3 ) can be isolated. 1 crystallizes monoclinic in the space group P21/c with a = 733.8, b = 734.2, c = 1132.7 pm, β = 92.8° and Z = 4. 2 crystallizes in the orthorhombic space group Pnma with a = 967.2, b = 793.3, c = 1168.3 pm and Z = 4. The SBr and BrBr force constants of 1 are compared with those of S2Br2, 3 and Br2 resp. The nmr and mass spectra of 1 and 2 are communicated.  相似文献   

19.
20.
A Golobi   B &#x;tefane  S Polanc 《Polyhedron》1999,18(27):8296-3668
Two new cobalt complexes: Co3(NO2)4(NH2CH2CH2O)4·H2O (1) and (NH2(C6H11)2)3[Co2(NO2)8OH]·3H2O (2) and the compound (NH2(C6H11)2)NO2 (3) were synthesised and their structures have been determined using single-crystal X-ray diffraction. Compound 1 consists of two centrosymmetrical trinuclear complexes and a water molecule of crystallization. Ligands coordinated to Co atoms are nitro and aminoethanolato groups. Structure 2 is built up of biscyclohexylammonium cations, dinuclear anions with hydroxo and nitro groups coordinated to Co atoms and water molecules. The coordination of Co atoms in both structures is roughly octahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号