首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Properties and N.M.R. Spectroscopic Studies of 2,4-Dithioxo-2,4-dimercapto-1,3-diaza-2λ5,4λ5-diphosphetidines On the reaction of py · PS2Cl ( 1 ) or py · PS2F ( 2 ) (py = Pyridine) with hexamethyl disilazane in a molar ratio of 1:1 the pyridinium salt of the 1,3-bis(trimethylsilyl)-2,4-dimercapto-2,4-dithioxo-1,3-diaza-2λ5, 4λ5-diphosphetidine ( 3 ) is formed. 3 reacts with MeI to the corresponding methyl ester 9 . There exist two isomers of 9 , probable with cis and trans configuration of the MeS groups, respectively. 3 and 9 have been characterized by i.r., Raman, mass, and NMR spectroscopy. 4 reacts in acetonitrilic solution in the presence of water under hydrolytic cleavage of the trimethyl silyl groups whereas the P2N2 ring is preserved. The hydrolysis of 9 has been studied by 1H-, 31P-, and 13C-NMR spectroscopy.  相似文献   

2.
Reaction of 1,′, 3,3′-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete with S? H Acidic Compounds. Reaction of 1,′,3,3′-tetrakis(dimethyl-amino)-1λ5,3λ5-diphosphete ( 1 ) with hydrogen sulfide yields bis(dimethylamino)thiophosphonylmethylidene-methyl-bis(dimethylamino)phosphorane ( 5 ).Water eliminates dimethylamine from 5 and forms bis(dimethyl-amino)thiophosphonyl-methyl(dimethylamino)phosphonylmethylene 6 . The reaction of 1 with ethylmercaptane yields the 2,4-bis(ethylthio)-derivative of 1 , i.e. compound 8 and bis(dimethylamino)phosphanylmethylidene-methyl-bis(dimethylamino)phosphorane ( 9 ), which is also formed from 1 and 2,4,6-trimethylphenylphosphane. Thiophenol protonates 1 to give the corresponding cation which is isolated as its thiophenolate, 10 . Properties, nmr and mass spectra of 5, 6 and 8 – 10 are described and discussed.  相似文献   

3.
1,4-Dihydro-1λ5,4λ5-[1,4]diphosphinines and a 1,4-Dihydro-1λ3,4λ3-[1,4]diphosphinine Reaction of thio- or dithiocarbonic acids with ethinyl amino phosphanes leads to 1,4-dihydro-1λ5,4λ5-[1,4]diphosphinine-1,4-disulfides. By this route compounds 4, 7 , and 8 have been prepared. Desulfurization of 4 with tri-n-butylphosphane results in 1,2,4,5-tetraphenyl-1,4-dihydro-1λ3,4λ3-[1,4]-diphosphinine 5 , which can be oxidized with tert-butyl-peroxide to the corresponding dioxide, 6 . From the reaction mixture of phenyl-phenylethinyl diethylamino phosphane and thioacetamide compound 4 and the unsymmetrical 1,4-dihydro-1λ5,4λ5-[1,4]diphosphinine 9 were isolated. Properties, nmr, ir and mass spectra of all new products are reported. A mechanism for the formation of 9 is suggested. The results of the X-ray structure determination of 8 and 9 are described.  相似文献   

4.
Mono- and Bis(difluorophosphoranyl)ethylene, n-Hexylidene-fluorophosphorane, and a 2,4-Di-n-pentyl-1λ5, 3λ5 -diphosphete Bis(diethylamino)phosphanylethylene, 1 , is converted by SF4 into bis(diethylamino)difluorophosphoranylethylene, 2. Analogously trans-1,2-bis(diphenylphosphanyl)ethylene, 3 , is converted into trans-1,2-bis(difluorodiphenylphoranyl)ethylene, 4. 2 reacts with n-butyllithium to give n-hexylidene-bis(diethylamino)fluorophosphorane, 5. With more n-butyllithium, the main product n-hexylidene-bis(diethylamino)-n-butylphosphorane, 7 , and the by-product 2,4-di-n-pentyl-1,1,3,3-tetrakis(diethylamino)-1λ5, 3λ5 -diphosphete, 8 , are formed. With t-butyllithium 2 yields 3,3-dimethyl-butylidene-bis(diethylamino)fluorophosphorane, 6. All new compounds 1, 2, 4–8 are characterized by their nmr and ir spectra.  相似文献   

5.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

6.
Molecular and Crystal Structure of 9λ4-Thia-2,4,6,8,10,11-hexaaza-1λ5,3λ5,5λ5,7λ5-tetraphosphabicylo[5.3.1]undeca-1,3,5,7(11),8,9-hexaene, Cyclotetraphosphazene Bridged by a Sulfur Diimide Group We have carried out an X-ray structure analysis of the title compound ( 1 ). 1 crystallizes in the monoclinic space group P21/b with a = 9.436(4), b = 20.102(7), c = 11.622(5) Å, γ = 103.52(8)°, Z = 8. There are two molecules in the asymmetric unit, which in approximation can be transformed one into the other by additional symmetry elements of a substructure of a space group B2/b. The S = N bond lengths are 1.53 Å. The P? N bonds connecting the SN2 system are 1.666 Å long. They are significantly longer than the P? N multible bonds in the P4N4 ring within a range of 1.517 to 1.565 Å. The sulfur diimide unit and its substituents are coplanar causing a half-boat conformation of the heterocyclic six membered ring. The cyclotetraphosphazene ring shows a flattened crown-saddle conformation, the phosphorous atoms arranged nearly at the corners of a square. Influenced by crystal packing there exist small deviations from the molecular mirror plane and also differences in conformation between the two molecules of the asymmetric unit.  相似文献   

7.
The oxidation of the 1,3-diaza-4,6-diphosphorine 1 with tetrachloroorthobenzoquinone 2 led, unexpectedly, to the formation of 1,5-dimethyl-2,2-bis(dimethyl-amino)-4,4,4,4-bis-(tetrachloro-o-phenylenedioxa)-1,5-diaza-2,4-λ4, λ6-diphosphorinane-6-one 4 , containing two phosphorus atoms of opposite formal charge and different coordination number. The X-ray crystal structure analysis of 4 revealed the presence of a six-membered ring with an unusual conformation.  相似文献   

8.
Reactions of λ5-Diphosphetes with COS and CO2. Dihydro-λ5-Phosphetes 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-diphosphete, 1 , reacts with COS to yield the (3-oxo-3,4-dihydro-1λ5-phosphete-2-yl)-phosphonothioic bis(dimethylamide) 7 . Reaction of dimethyl substituted 1 , i.e. 1,1,3,3-tetrakis(dimethylamino)-2,4-dimethyl-1λ5,3λ5-diphosphete 4 , with COS and CO2 results in (3-oxo-2,3-dihydro-1λ5-phosphete-2-yl)-phosphonothioic bis(dimethylamide) 9 , and (3-oxo-2,3-dihydro-1λ5-phosphete-2-yl)-phosphonic bis(dimethylamide) 10 , respectively. Reaction mechanisms are suggested. 7, 9 and 10 are characterized by their properties, and their nmr, mass-, and ir-spectra. The results of X-ray structural analyses of 9 and 10 are reported and discussed.  相似文献   

9.
Benzooxaza- and Benzodiaza-λ3-Phospholes and their Conversion to Spirocyclic λ5-Phospholes 2,3-Dimethyl-1,3,2λ3-benzooxazaphosphole and 1,2,3-trimethyl-1,3,2λ3-benzodiazaphosphole are obtained by transamination of methylbis(dimethylamino)phosphane with N-methyl-o-aminophenol and N,N′-dimethylamino-o-phenylenediamine. These compounds are converted by oxidation and disproportionation reactions to spirocyclic λ5-phospholes. The crystal structure of 2-methyl-2,2′-spirobi(1,3-dimethyl-1,3,2λ5-benzodiazaphosphole) is established and a trigonal bipyramidal geometry of the molecule has been found.  相似文献   

10.
For the first time, the (E)-1,2-difluoro-2-(pentafluoro-λ6-sulfanyl)ethenyl group has been bonded to λ3σ3 phosphorus using a Grignard reagent. Similar phosphorus derivatives containing the (Z)-1,2,3,3,3-pentafluoropropenyl moiety were also synthesized for comparison. In three cases, hexafluoroacetone was added to form 4,4,5,5-tetrakis(trifluoromethyl) 1,3,2λ5σ5-dioxaphospholanes. © 1997 John Wiley & Sons, Inc. Heteroatom Chem 8: 467–471, 1997  相似文献   

11.
Synthesis of Bis‐(2‐chloroethyl)amino‐substituted Diazaphosphorinones. Reversible Oxidative Addition of Hexafluoroacetone to σ3λ3‐Phosphorus Compounds. Synthesis of σ5λ5‐Spirophosphoranes and their Decomposition The reaction of 1‐methyl‐pyrido[3,2‐e]‐3,1‐oxazin‐2,4‐dione ( 1 ) with benzylamines led to the aminonicotinic acid amides 2 – 4 . Their reaction with phosphorus trichloride furnished the P‐chloro‐pyridodiazaphosphorinones 5 – 7 , which, upon reaction with bis‐(2‐chloroethyl) ammonium chloride/triethylamine, were converted into the P‐bis‐(2‐chloroethyl)amino‐substituted pyridodiazaphosphorinones 8 – 10 . The P‐chloro‐benzodiazaphosphorinone 11 was allowed to react with 2‐chloroethylammonium chloride/triethylamine to form the 2‐chloroethylamino‐substituted derivative 12 . The σ3‐diazaphosphorinones 8 , 9 , 12 and 13 were oxidized with the urea‐hydrogen peroxide‐(1 : 1)‐adduct to the corresponding phosphoryl derivatives 14 – 17 . The oxidative addition of hexafluoroacetone (HFA) to the σ3‐diazaphosphorinone 18 led, with abstraction of methyl chloride, to the tricyclic phosphorane 19 b . The spirophosphoranes 21 – 23 were formed by reaction of compounds 8 , 9 and 13 with HFA. NMR‐studies were made on the decomposition of the bicyclic phosphoranes 20 a , 22 and 23 . The oxidative addition of HFA to diazaphosphorinones was found to be reversible. Single crystal X‐ray determinations were conducted on compounds 17 and 19 b . They confirm the expected connectivity. Compound 17 was found to exhibit short C–H‥ O‐hydrogen bonds (H…O 234 pm). Compound 19 crystallises as two independent molecules which differ, e. g., in the orientation of the chloroethyl groups.  相似文献   

12.
Synthesis and NMR Spectra of λ5-Diphosphets. Structure of 2,4-Diphenyl-1,1,3,3-tetrakis (diethylamino)-1λ5, 3λ5-diphosphete Preparation, properties, and n.m.r. spectra of C2H5PF2[N(C2H5)2]2, CH2?PF[N(C2H5)2]2, and the diphosphetes {RC?P[N(C2H5)2]2}2 (R) ? H ( 5a ), CH3 [( 5b )] are described. The λ5-diphosphete {HC?P(NR2)2}2 (R ? CH3) reacts with BF3 · O(C2H5)2 to give which is transformed into by n-C4H9Li. The crystal and molecular structure of 2,4-diphenyl-1,3,3-tetrakis(diethylamino)-1λ5,3λ5-diphosphete 2 are reported and discussed.  相似文献   

13.
The reaction of N,N,O-tris(trimethylsilyl)-o-aminophenol with two equivalents of phosphinic chloride yielded dimeric 2,2-disubstituted 1,3,2λ5-benzoxazaphospholes and trimethylsilyl phosphinate. The chlorides having the bulk substituents (o-chlorophenyl or tert-butyl) at phosphorus or containing P N and P O bonds (instead of a P C bond) either didn't react at all or reacted to retain the phosphoryl group. Being stable in solution at 20°C, the individual diastereoisomers of dimeric 1,3,2-benzoxazaphospholes were converted upon warming to an equilibrium mixture of isomers. When reacted with another dimer each gave a mixed dimeric compound having two different phosphorus atoms in the molecule.  相似文献   

14.
Palladium(II) Complexes of 1,1,3,3,5,5‐Hexakis(dimethylamino)‐λ5‐[1,3,5]triphosphinine 1,1,3,3,5,5‐Hexakis(dimethylamino)‐1λ5‐3λ5‐5λ5‐[1,3,5]triphosphinine ( 5 ) reacts with (benzonitrile)2PdCl2 to give the chelate complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2,C4)palladium ( 6 ). In a pyridine‐d5 solution of 6 the complex dichloro(dodeca‐N‐methyl‐1λ5,3λ5,5λ5‐1,3,5‐triphosphinine‐1,1,3,3,5,5‐hexaamin‐C2)((2H5)pyridine‐N)palladium ( 7 ) is formed. The solute 7 could not be isolated as a solid, because elimination of the solvent regenerates 6 quantitatively. Properties, nmr and ir spectra of 6 and 7 are reported. 6 is characterized by the results of an X‐ray structural analysis.  相似文献   

15.
Reactions of 5H,2λ5-Azaphospholes with Arylazocarbonitriles and Dialkyl Acetylenedicarboxylates Azaphospholes 1a – c react with activated arylazocarbonitriles to 1,5,2λ5-diazaphosphorines 2a – c and 3a – c . The reaction of 1a – c with diethyl or dimethyl acetylenedicarboxyiates yields 7H-1,4λ5-azaphosphepines 4a – c . The structures of 2b , 3a , and 4a are established by an X-ray diffraction analysis.  相似文献   

16.
The reaction of methylisatoic acid anhydride 1 with benzylamines led to the N-benzyl-N′-methylanthranilamide derivatives 2 – 4 . Their reaction with phosphorus trichloride furnished the 2-chloro-1-halobenzyl/benzyl-3-methyl-4(1 H)-1,3,2-benzodiazaphosphorin-4-ones 5 – 7 which, upon reaction with bis-(2-chloroethyl)ammonium chloride/triethylamine, were converted into the P-bis-(2-chloroethyl)amino-1-halobenzyl/benzyl-3-methyl-4(1 H)-1,3,2-benzodiazaphosphorin-4-ones 8 – 10 and 12 . With 2-chloroethylammonium chloride/triethyl-amine the P? NHCH2CH2Cl-substituted compound 11 was obtained from the PIIICl-species 6 . The reaction of 8 – 10 and 12 with hexafluoroacetone (HFA) took an unusual course: apart from the oxidative addition of HFA and formation of the perfluoropinacolyl ring system, one of the two CH2CH2Cl groups was found to alkylate the CH3N atom with formation of a five-membered (diazaphospholane) ring in the tricyclic phosphoranes 13 – 16 . The reaction of 11 with HFA also produced a spirophosphorane 17 which involved a λ5-oxazaphosphetidine ring system. In the reaction of 8, 10 and 12 with tetrachloro-o-benzoquinone, an oxidative addition reaction with concomitant N-alkylation and formation of the tricyclic phosphoranes 18 – 20 was found to take place. Single crystal X-ray structure determinations are described for the phosphoranes 13, 14 and 16 , and for the precursor compound 9 . The following features are common to the isostructural compounds 13 and 16 and the diethyl ether hemisolvate of 14 : the (λ5)-spiro phosphorus atom lies out of the plane of the other atoms of the rings to which it is common, and the dioxaphospholane rings display a twist conformation. In the λ3P-compound 9 the phosphorus atom also lies out of the plane of the other ring atoms.  相似文献   

17.
1,1,3,3 - Tetrakis(dimethylamino) - 1λ5,3λ5 - diphosphete, 1 , reacts with cyanoformic acid methyl ester to form two isomers of the title compound 2 . Properties, NMR, mass, and IR spectra of 2 , as well as the molecular and crystal structure of the E isomer of 2 , are described and discussed.  相似文献   

18.
6,2,4-Thiadiazetidines and 1,2λ6,3-Oxathiazetidines From the reaction of the sulfur triimides (RN?)3S ( 2a R?(CH3)3C, 2b R?(CH3)3Si) with pentafluoroazapropene ( 11 ) the appropriate 1λ6,2,4 thiadiazetidines ( 13a, 13b ) are formed, while from ClSO2N?CCl2 ( 14 ) and 2a (CH3)3C? N?C?N? SO2Cl ( 17 ) is isolated. 2b and hexafluoroacetone ( 18 ) give the rather unstable 1,2λ6,3-oxathiazetidine ( 20 ).  相似文献   

19.
Reaction of 2-Azidoalcohols with Trialkylphosphites. Formation of Aziridines and Amidophosphates via Imidophosphates and 1,3,2λ5-Oxazaphospholidines The 2-azidoalcohols 1 and 2 react with trialkyl phosphites to trialkyl (2-hydroxy-alkyl)imidophosphates 10, 14 , and 15 respectively, whereas the 2-azidoalcohols 3-7 yield the 2,2,2-trialkoxy-1,3,2λ5-oxazaphospholidines 16–22 under the same reaction conditions (Scheme 2). The dialkyl (2-hydroxyalkyl)amidophosphates 23, 25 , and 27–34 are obtained by the reaction of 10 , and 14–22 with water (Scheme 3 and 4). By reaction with alcohols, however, both the imidophosphates 10, 14 and 15 and the 1,3,2λ5-oxazaphospholidines 16–22 are transformed to aziridines 24, 26 , and 35–38 (Scheme 5). The reactions of the imidophosphates seem to proceed via 1,3,2λ5-oxazaphospholidines.  相似文献   

20.
X-Ray Crystal Structure Determination of 1,3-Bis(diethylamino)-1,3-dibenzyl-2,4-diphenyl-1λ5, 3λ5-diphosphete Benzylidene-diethylamino-benzylfuorophosphorane, 1 , reacts with lithium bis(trimethylsilyl)amide to give the title compounds 2 and 1-diethylamino-2,3-diphenylphosphirane, 3 . Only one of the stereoisomers of 2 is formed in which the two benzyl groups are located on the same side of the planar four-membered ring. 2 crystallizes in the monoclinic space group P21/n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号