首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoraneiminato Complexes of Bismuth(III). Crystal Structures of [BiF2(NPEt3)(HNPEt3)]2 and [Bi2I(NPPh3)4]I3 [BiF2(NPEt3)(HNPEt3)]2 ( 1 ) has been obtained by the reaction of BiF3 with Me3SiNPEt3 at 100 °C and subsequent extraction with 1,2‐dimethoxyethane in the presence of traces of water forming pale‐yellow, moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at –83 °C: a = 2105.0, b = 1195.8, c = 728.2 pm, β = 92.55°. 1  forms centrosymmetric dimeric molecules, in which the Bi atoms are linked via Bi–N bonds of varying length (213.9 and 240.1 pm) of the NPEt3 groups to form a Bi2N2 four‐membered ring. The longer one of the two Bi–N bonds is trans to one terminal F atom. [Bi2I(NPPh3)4]I3 ( 2 ) has been obtained by the reaction of bismuth with N‐iodine triphenylphosphaneimine in dichloromethane forming red crystals. Crystal structure determination of 2 · 2.5 CH2Cl2: Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1542.6, b = 2409.1, c = 2173.5 pm, β = 105.82°. In 2 the Bi atoms are linked via two N atoms of two NPPh3 groups to form a non‐planar Bi2N2 four‐membered ring with a fold angle of 27° along the N…N connection line. The two remaining NPPh3 groups are terminally connected and bent in the same direction. The iodide ion caps the two Bi atoms so that a [Bi2I(NPPh3)4]+ cation is formed.  相似文献   

2.
Reaction of Chlorine Nitrate with CF3I: Isolation of Trifluormethylchloroiodinenitrate CF3I(Cl)ONO2 and the Crystal Structure of Trifluormethyliodinedinitrate CF3I(ONO2)2 CF3I reacts with ClONO2 to Iodine(III)-compounds. After an addition CF3I(Cl)ONO2 is isolated and characterized by vibrational spectra. With surplus ClONO2 it is formed CF3I(ONO2)2. CF3I(ONO2)2 crystallizes monoclinic in the space group P21/c with the cell parameters a = 1 024.3(6) pm, b = 873.5(6) pm, c = 873.4(6) pm and Z = 4. We measered following bonding distances: I? O: 207.3(3) and 220.8(2) pm, I? C: 221.1(4) pm and N? O: from 119.1(4) to 141.5(3) pm. Through an intermolecular I ··· O-contact the central iodine becomes a distorted plane geometry.  相似文献   

3.
The Reactions of Europium and Yttrium with N‐Iodinetriphenylphosphoraneimine. Crystal Structures of [EuI2(DME)3], [Eu2I(NPPh3)5(DME)] and [Y2I(NPPh3)4(THF)4]+I3 When treated with ultrasound, the reaction of europium metal with INPPh3 in 1,2‐dimethoxyethane (DME) leads to the complexes [EuI2(DME)3] ( 1 ) and [Eu2I(NPPh3)5(DME)] ( 2 ) which are separated from each other by fractional crystallization. On the other hand, the reaction of yttrium metal with INPPh3 under similar conditions in THF gives the ionic phosphoraneiminato complex [Y2I(NPPh3)4(THF)4]+I3 ( 3 ). All complexes are characterized by crystal structure determinations. 1 : Space group P21, Z = 2, lattice dimensions at 188 K: a = 848.9(1); b = 1059.4(1); c = 1227.9(1) pm; β = 93.793(6)°; R = 0.0246. In the molecular structure of 1 the europium atom is eightfold coordinated with a bond angle I–Eu–I of 158.51°. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at 193 K: a = 1405.5(1); b = 1652.2(2); c = 2203.7(2) pm; α = 89.404(11)°; β = 72.958(11)°; γ = 78.657(11)°; R = 0.0391. In 2 the europium atoms are linked by the μ‐N‐atoms of two (NPPh3) groups to form a planar Eu2N2 four‐membered ring. One of the Eu atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Eu atom is coordinated by the N atom of one (NPPh3) group, by the terminally bounded iodine atom and by the oxygen atoms of the DME chelate, thus achieving a distorted octahedral surrounding. 3 · 61/2 THF: Space group P1, Z = 2, lattice dimensions at 103 K: a = 1739.7(2); b = 1770.1(2); c = 2153.8(3) pm; α = 74.929(15)°; β = 84.223(14)°; γ = 64.612(12)°; R = 0.0638. In the cation [Y2I(NPPh3)4(THF)4]+ of 3 the yttrium atoms are linked by the μ‐N atoms of two (NPPh3) groups as well as by the μ‐I atom. One (NPPh3) ligand and two THF molecules complete the distorted octahedral coordination at each yttrium atom.  相似文献   

4.
Structurally Chemical Investigation of Monoammin Copper (I) Complexes : [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 The preparation and the properties of [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 are described. I.R. and Raman spectra have been recorded and assigned. According to X-ray powder diagrams, [CuNH3]2[Pt(CN)6] crystallizes in the trigonal space group D–P3 ml, a = 7.771, c = 5.988 Å, Z = 1. According to the spectroscopic and crystallographic data, it is concluded that the CuI ion is coordinated with one NH3 group and with the N atoms of the cyanometallate anions. The coordination number of the Cu+ is 4 in [CuNH3]2[Pt(CN)6] and 3 in [CuNH3]2[Pt(CN)4]. In the Cu3[Co(CN)6] · 2 NH3 complex two Cu atoms have the coordination number 2, the third Cu atom 4.  相似文献   

5.
The First Oxoferrate(I): On the Constitution of K3[FeO2] and K3[NiO2] Garnet-red single crystals of K3[FeO2] were obtained for the first time by heating intimate mixtures of K6[CdO4] and CdO (molar ratio 1:1.16) in closed Fe-cylinders at 450°C during 40 d. The same way of preparation via “reaction with the cylinder surface” was applied to prepare similarly coloured single crystals of K3[NiO2] (K6CdO4 in closed Ni-cylinders at 500°C during 49 d). The structure determination by four circle diffractometer data (MoKα , K3[FeO2]: 731 out of 731 Io(hkl), R = 5.76%, Rw = 5.33%, K3[NiO2]: 755 out of 755 Io(hkl), R = 8.70%, Rw = 4.25%) confirms the space groups P 41212 and P 43212, respectively. K3[FeO2]: a = 604.2(2) pm, c = 1 402.7(3) pm, Z = 4 K3[NiO2]: a = 603.6(1) pm, c = 1 405.2(2) pm, Z = 4. (powder data, standard deviations in parentheses) Essential feature of the structure are the dumb-bell-like anions [O? M? O]3? (M = Fe, Ni). Their arrangement corresponds to a stuffed derivative of the KrF2-type. Magnetic properties of K3[FeO2] were determined and cover the monovalence of Fe. MAPLE-calculations reveal the strong coincidence of monovalent VIIIb-cations.  相似文献   

6.
The infrared spectra of the title compounds are reported and discussed. The influence of the peroxide groups on the bond properties of the other ligands and some characteristics of the metal—peroxide interactions are analyzed.  相似文献   

7.
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043.  相似文献   

8.
Preparation, Vibrational Spectra, and Normal Cooordinate Analysis of mer-[OsCl3I(NCS)2c]2? and Crystal Structures of two Modifications of mer-(Ph4As)2[OsCl3I(NCS)2c] By treatment of cis-/trans-[OsCl4I2]2? or fac-[OsCl3I3]2? with (SCN)2 in dichloromethane mixtures of different linkage isomers are formed, from which mer-[OsCl3I(NCS)]2? has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. With tetraphenylarsonium ions mer-(Ph4As)2[OsCl3I(NCS)2c] crystallizes in two different modifications. From acetone solution the high-temperature form α precipitates above ?10°C, the low-temperature form β below, ?65°C. The X-Ray structure determinations on single crystals of α-mer-(Ph4As)2[OsCl3I(NCS)2c] (triclinic, space group P 1 , a = 10.245(5), b = 11.690(5), c = 22.027(5) Å, α = 83.650(5)°, β = 85.734(5)°, γ = 72.566(5)°, Z = 2) and β-mer-(Ph4As)2[OsCl3I(NCS)2c] (triclinic, space group P 1 , a = 10.959(5), b = 11.122(5), c = 21.745(5) Å, α = 97.677(5)°, β = 92.339(5)°, γ = 104.712(5)°, Z = 2) reveal the ordering of the complex anions, which significantly differ in their geometry. The via N coordinated thiocyanate groups exhibit Os? N? C angles of 172.7° and 173.3° (α) and of 164.4° and 175.4° (β). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salt of the complex anion are assigned by a normal coordinate analysis based on a modified valence force field. The valence force constants are fd(OsN) = 1.66 and 1.64 mdyn/Å. Taking into account the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

9.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

10.
Synthesis and Crystal Structure of [Li(DME)2I] . LiI can be dissolved at 50°C in toluene/DME (2:1). At - 20°C [Li(DME)2I] ( 1 ) was isolated in 75% yield. 1 was characterized by NMR techniques as well as an X-Ray structure determination. 1 crystallizes in the space group C2/c with a = 1 356.9(2), b = 813.2(1), c = 1 259.1(2) pm, and β = 99.74(1)°.  相似文献   

11.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

12.
Phosphaneimine and Phosphoraneiminato Complexes of Magnesium. The Crystal Structures of [MgBr1,25I0,75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2], [Mg2I2(Me3SiNPMe2CH2)(Me3SiNPMe2CH2CH(Me)O)(OEt2)], and [MgBr(NPMe3)]4 · C7H8 By reactions of the silylated phosphaneimine Me3SiNPMe3 with the Grignard reagents EtMgBr and MeMgI, respectively, the carbanionic phosphoraneiminato derivatives [XMg(CH2PMe2NSiMe3)]n (X ? Br, I) can be isolated as main products. The by-products of these reactions, [MgBr1.25I0.75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2] and [Mg2I2(CH2PMe2NSiMe3)(O(Me)CHCH2PMe2NSiMe3)(OEt2)] were identified by crystal structure determinations. The phosphoraneiminato complex [MgBr(NPMe3)]4 · C7H8 with hetero cubane structure is formed by a metathesis reaction of [ZnBr(NPMe3)]4 with RMgBr (R ? Ph. Mes).  相似文献   

13.
14.
Phosphoraneiminato Complexes of Titanium(IV). Crystal Structures of [TiCl3(NPEt3)]2, [TiCl3(NPEt3)(THF)2], and [TiCl4{Me2Si(NPEt3)2}] [TiCl3(NPEt3)]2 ( 1 ) is formed from titanium(IV) chloride and the silylated phosphaneimine Me3SiNPEt3 in dichloromethane as reddish-brown, moisture-sensitive crystals. According to the crystal structure analysis these crystals show centrosymmetric Ti2N2 four-membered rings with Ti–N distances of 184.7 and 210.3 pm. With tetrahydrofurane 1 forms yellow, moisture sensitive crystals of the solvate [TiCl3(NPEt3)(THF)2] ( 2 ), in which the titanium atom is octahedrally coordinated. The THF molecule which is in trans position to the phosporaneiminato ligand realizes but a very weak Ti–O bond of 238.0 pm, the cis THF molecule shows a Ti–O distance of 213.7 pm. With 173.4 pm along with a TiNP bond angle of 160.0° the TiN distance is very short. The bis(phosphaneimine) complex [TiCl4{Me2Si(NPEt3)2}] ( 3 ) is formed as colourless crystals in low yield in the reaction of titanium(IV) chloride with Me3SiNPEt3 and trimethylcyclopentadienylsilane. In 3 the titanium atom is surrounded by four chlorine atoms in a distorted octahedral fashion and by the two N atoms of the Me2Si(NPEt3)2 molecule with TiN distances of 205.6 pm.  相似文献   

15.
Phosphorane Iminato Complexes of Niobium and Tantalum. Crystal Structures of [NbCl4(NPiPr3)(CH3CN)], [NbCl3(NPiPr3)2], [TaCl4(NPiPr3)]2, and [TaCl3(NPiPr3)2] The title compounds have been prepared from the pentachlorides of niobium and tantalum with the silylated phosphorane imine Me3SiNPiPr3. They are characterized by IR spectroscopy and crystal structure determinations. NbCl4(NPiPr3)(CH3CN)] . Space group Pna21, Z = 4, 2102 observed unique reflections, R = 0.022. Lattice dimensions at ?50°C: a = 1627.2, b = 876.3, c = 1335.3 pm. The compound forms monomeric molecules with the acetonitrile molecule in trans position to the phosphorane iminato group. This group shows a short NbN distance of 178.2 pm with a NbNP bond angle of 165.2°. [NbCl3(NPiPr3)2] . Space group Cc, Z = 4, 2534 observed unique reflections, R = 0.046. Lattice dimensions at 20°C: a = 1302.65, b = 1321.69, c = 1672.04 pm, β = 111.713°. The compound forms monomeric molecules with a distorted bipyramidal surrounding of the niobium atom and equatorially arranged phosphorane iminato groups. [TaCl4(NPiPr3)]2 . Space group Pbca, Z = 4, 1537 observed unique reflections, R = 0.037. Lattice dimensions at ?40°C: a = 1420.6, b = 1483.9, c = 1622.0 pm. The compound forms centrosymmetric dimeric molecules with dissimilarly long Ta2Cl2 bridges and equatorially arranged phosphorane iminato groups. [TaCl3(NPiPr3)2] . Space group Cc, Z = 4, 5737 observed unique reflections, R = 0.039. Lattice dimensions at ?50°C: a = 1303.9, b = 1327.2, c = 1682.1 pm, β = 111,92°. The compound is isotypical with the corresponding niobium compound.  相似文献   

16.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

17.
Preparation, Vibrational Spectra, Normal Coordinate Analysis, and Crystal Structure of fac-(PPN)2[ReClBr2I3] By treatment of cis-[ReBr2I4]2? with HCl fac-[ReClBr2I3]2? is formed beside other mixed complex ions of the Type [ReClkBrlIm]2?, k + l + m = 6, which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on single crystals of (PPN)2[ReClBr2I3] (monoclinic, space group P21/c, a = 22.059(3), b = 13.569(2), c = 23.9679(2) Å, β = 106.194(4)°, Z = 4) reveals the complete ordering of the complex anions. Due to the different trans influence the bond lengths ReCl (2.39) and ReBr (2.50) are slightly increased, the average ReI distance (2.66 Å) is a little shortened as compared with corresponding homoleptic octahedral complexes. The well resolved low temperature (80 K) IR and Raman spectra exhibit rheniumhalogen stretching vibrations in characteristic regions. The assignment is confirmed by the normal coordinate analysis based on a general valence force field. Taking into account increments of the trans influence on the valence force constants of the structural groups an adjustment between calculated and observed frequencies within a few cm?1 is achieved.  相似文献   

18.
Silylated Phosphaneimine Complexes of Chromium(II), Palladium(II), and Copper(II). The Crystal Structures of [CrCl2(Me3SiNPMe3)2], [PdCl2(Me3SiNPEt3)2], and [CuCl2(Me3SiNPMe3)]2 The title compounds have been prepared by the reaction of the silylated phosphaneimines Me3SiNPR3 (R = CH3, C2H5) with CrCl2(THF)2, PdCl2 and CuCl2, respectively, in dichloromethane suspensions. All donor-acceptor complexes were characterized by IR spectroscopy and by crystal structure determinations. [ CrCl2(Me3SiNPMe3 )2]: Space group Pccn, Z = 4, structure determination with 2104 observed unique reflections, R = 0.045. Lattice dimensions at ?70°C: a = 1326.3, b = 1562.5, c = 1171.5 pm. Within the monomeric molecular structure the chromium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Cr? Cl = 235.94 pm and Cr? N = 211.7 pm. [ PdCl2(Me3SiNPEt3)2 ]: Space group P21/n, Z = 2, structure determination with 2412 observed unique reflections, R = 0.031. Lattice dimensions at 20°C: a = 917.3, b = 1390.2, c = 1161.7 pm, β = 95.80°. Within the monomeric molecular structure the palladium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Pd? Cl = 222.9 pm and Pd? N = 209.5 pm. [ CuCl2(Me3SiNPMe3)2 ]: Space group Pbca, Z = 4, structure determination with 1861 observed unique reflections, R = 0.067. Lattice dimensions at ?70°C: a = 1440.2, b = 1205.1, c = 1536.5 pm. The compound forms centrosymmetric dimeric molecules, in which the Cu atoms are linked via almost symmetrical chloro-bridges with Cu? Cl distances of 231.4 pm. The distance Cu? N is 196.7 pm.  相似文献   

19.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

20.
Reactions of ClS[OCH(CF3)2]3 and S[OCH(CF3)2]2 with Phosphorus(III) Derivatives The sulfurane ClS[OCH(CF3)2]3 reacts with Me3P to give the phosphonium salt [Me3POCH(CF3)2]+Cl?, in the case of (MeO)3P products of an Arbuzov reaction are found: (MeO)2P-(:O)OCH(CF3)2 and MeCl; the sulfurane is reduced to the sulfoxylate S[OCH(CF3)2]2. The cyclic phosphite FP[OC(CF3)2C(CF3)2O] and P[OCH(CF3)2]3 furnish derivatives of pentacoordinated phosphorus upon reaction with ClS[OCH(CF3)2]3. The sulfoxylate S[OCH(CF3)2]2 oxidises Me3P, (MeO)3P and P[OCH(CF3)2]3 to form R3P? O and R3P? S (R = Me, OMe, OCH(CF3)2). The ether (CF3)2CHOCH(CF3)2 is isolated, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号