首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Abstract. A new dinuclear complex, [Cu21, 3‐NCS)2(Ophen)2(OH2)2], (HOphen = 1, 10‐phenanthrolin‐2‐ol) was synthesized and its crystal structure was determined by X‐ray crystallography. In the complex, the CuII ion assumes a distorted square pyramidal arrangement and the thiocyanate anion functions as bridged ligand and Ophen as capped ligand. The analysis of the crystal structure shows that there exists a π–π stacking interaction between the adjacent complexes. The theoretical calculations reveal that the magnetic coupling pathways from the thiocyanate anions bridge ligand and the π–π stacking magnetic coupling pathway resulted in the weak ferromagnetic interactions with 2J = 18.46 cm–1 and 2J = 10.46 cm–1, respectively. The calculations also display that the spin delocalization and the spin polarization occur in the bridge magnetic coupling system and the π–π stacking magnetic coupling system, and the magnetic coupling mechanism of the π–π stacking can be explained with McConnell I spin‐polarization mechanism. The fitting for the data of the variable‐temperature magnetic susceptibility with dinuclear CuII formula gave the magnetic coupling constant 2J = 2.84 cm–1 and zJ′ = 0.03 cm–1, in which the 2J = 2.84 cm–1 is attributed to the magnetic coupling from the bridge dinuclear CuII unit and the zJ′ = 0.03 cm–1 is ascribed to the π–π stacking magnetic coupling system. The study may benefit to understand the magnetic coupling mechanism of π–π stacking system.  相似文献   

6.
7.
The activation of CS2 is of interest in a broad range of fields and, more particularly, in the context of creating new C−C bonds. The reaction of the dinuclear ytterbium(II) complex [Yb2L4], 1 , [L=(OtBu)3SiO] with carbon disulfide led to the isolation of unprecedented reduction products. In particular, the crystallographic characterization of complex [Yb2L4(μ-C2S2)], 2 , provided the first example of an acetylenedithiolate ligand formed from metal reduction of CS2. Computational studies indicated that this unprecedented reactivity can be ascribed to the unusual binding mode of CS22− in the isolated “key intermediate” [Yb2L4(μ-CS2)], 3 , which results from the dinuclear nature of 1 .  相似文献   

8.
A series of luminescent bis‐cyclometalated gold(III) complexes containing bridging alkynyl ligands of different natures has been synthesised and characterised. The photophysical properties of the complexes have been investigated through electronic absorption spectroscopy and emission studies. The vibronic emission bands are found to originate from the triplet intraligand (IL) π–π* excited states of the bis‐cyclometalating ligands with some mixing of 3IL π–π* character of the alkynyl ligands. The electrochemical study of a nonsymmetric dinuclear complex shows two successive reduction processes originating from the reductions of the two different cyclometalating ligands. The complexes are found to undergo supramolecular self‐assembly processes driven by π–π stacking and hydrophobic/hydrophilic interactions to give honeycomb nanostructures, as revealed from the SEM images. Solvent‐dependent morphological transformations have also been observed, which have been studied by SEM and 1H NMR spectroscopy.  相似文献   

9.
The anodic electropolymerization of thiophene‐functionalized cyclometalated ruthenium(II) complexes is shown for the first time. Oxidative decomposition reactions can be overcome by modification of the involved redox potentials through the introduction of electron‐withdrawing substituents, namely nitro groups, at the cyclometalating phenyl ring. The generated functionalized ruthenium(II) complexes allow the electrochemical preparation of thin polymer films, which show a broad UV/Vis absorption as well as reversible redox switchability. The presented complexes are promising candidates for future photovoltaic applications based on photo‐redox‐active films.  相似文献   

10.
Rollover cyclometalated complexes constitute a family of derivatives which differ from classical cyclometalated species in certain aspects. Various potential application fields have been developed for both classes of compounds, which have both similarities and differences. In order to uncover the relationships and distinctions between these two families of compounds, four Pt(II) cyclometalated complexes derived from 2-phenylpyridine (ppy) and 2,2′-bipyridine (bpy), assumed as prototypical ligands, were compared. For this study, an electron rich isostructural and isoelectronic pair of compounds, [Pt(N^C)Me(PPh3)], and an electron-poorer compound, [Pt(N^C)Cl(PPh3)] were chosen (N^C = ppy or bpy). DFT calculations, cyclic voltammetry, and UV-Vis spectra also helped to shed light into these species. Due to the presence of the more electronegative nitrogen in place of a C-H group, the rollover bpy-H ligand becomes a slightly weaker donor than the classical ppy-H ligand, and hence, generates (slightly) more stable cyclometalated complexes, lower energy frontier molecular orbitals, and electron-poorer platinum centers. On the whole, it was revealed that classical and rollover complexes have overall structural similarity, which contrasts to their somewhat different chemical behavior.  相似文献   

11.
The complex class [Fe(N^N^C)(N^N^N)]+ with an Earth-abundant metal ion has been repeatedly suggested as a chromophore and potential photosensitizer on the basis of quantum chemical calculations. Synthesis and photophysical properties of the parent complex [Fe(pbpy)(tpy)]+ (Hpbpy=6-phenyl-2,2′-bipyridine and tpy=2,2′:6′,2′′-terpyridine) of this new chromophore class are now reported. Ground-state characterization by X-ray diffraction, electrochemistry, spectroelectrochemistry, UV/Vis, and X-ray spectroscopy in combination with DFT calculations proves the high impact of the cyclometalating ligand on the electronic structure. The photophysical properties are significantly improved compared to the prototypical [Fe(tpy)2]2+ complex. In particular, the metal-to-ligand absorption extends into the near-IR and the 3MLCT lifetime increases by 5.5, whereas the metal-centered excited triplet state is very short-lived.  相似文献   

12.
The absorption and emission spectra, emission lifetimes, luminescence quantum yields, and electrochemical behavior of the complexes Pd(Phpy)2, Pd(Thpy)2, and Pd(bhq)2 (Phpy?, Thpy?, and bhq?, and bhq? are the deprotonated forms of 2-phenylpyridine, 2-(2-thienyl)pyridine, and benzo[h] quinoline, respectively) have been studied, and the results obtained have been compared with those available for Pt(II) and Pt(IV) complexes containing the same ligands. The intense ligand-centered absorption bands below 340 nm are strongly perturbed by matalation, and the absorption features in the 340–450-nm region are likely to include contributions from formally metal-to-ligand charge-transfer transitions. The structured luminescence spectra observed at 77 K (lifetimes are 0.48, 0.28 and 2.6 ms for Pd(Phpy)2, Pd(Thpy)2, and Pd(bhq)2, respectively) have been assigned to transitions having mainly ligand-centered character, with an increasing metal-to-ligand charge-transfer contribution in going from Pd(bhq)2 to Pd(Phpy)2 and to Pd(Thpy)2. The complexes Pd(phpy)2 and Pd(thpy)2 show two reversible one-electron reduction waves, whereas reduction of Pd(bhq)2 is irreversible, as is the oxidation of the three complexes.  相似文献   

13.
In this paper, we show the synthesis of palladium(II) 4,5-phenylimidazole cyclometalated complexes. They have been characterized by IR, 1H- and 13C-NMR spectroscopy. The cyclometalated dimer compound 2 [Pd(C15H11N2)(μ-OAc)]2 and the cyclometalated monomer compound 5 [PdBr(SEt2)(C15H11N2)], having OAc and Br as leaving groups, interact with DNA, modifying its secondary structure (as measured by Tm and CD), without modifying its tertiary structure (as determined by measurement of the electrophoretic mobility in agarose gels). The monomeric compound 5 seems to be the one that induces the highest alterations in DNA secondary structure since it strongly modifies the CD spectrum of the DNA. Melting data of drug–DNA complexes suggest that, at low drug concentration, the 4,5-Imd ligand intercalates between the base pairs in the DNA molecule, increasing the Tm, while at high drug concentrations the palladium(II) centers destabilize the double helix, producing a lowering in Tm values. These results indicate that complexes containing planar structures might selectively bind to DNA that is not supercoiled, and that therefore it only has a secondary structure. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Both oxidized and reduced glutathione (γ-L -Glu-L -Cys-Gly) react with the anticancer complex [Pt(en)Cl2] to form the bicyclic complex illustrated (en=ethylenediamine). This unprecedented structure, which was determined from extensive NMR experiments, contains a ten-membered macrochelate ring.  相似文献   

15.
The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2'-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.  相似文献   

16.
This Review showcases the ability of bi‐ and tridentate ligands to stabilize gold in high oxidation states through the formation of mono‐ and biscyclometalated gold(III) complexes. In‐depth studies on the synthesis, intrinsic reactivity, catalytic relevance, and photophysical properties of stabilized gold(III) species have been carried out, setting the stage for exciting developments in various research areas, such as catalysis, inorganic and bioinorganic chemistry, ligand design, and materials science.  相似文献   

17.
18.
We report the synthesis, characterization, and spectroscopic investigations of a new responsive-at-metal cyclometalated platinum(II) complex. With mild chemical oxidants and reductants, it was possible to obtain the same complex in three different oxidation states and each of these complexes was structurally characterized by single-crystal X-ray diffraction. We discovered that the platinum(II) complex displays strong solvatochromism in the solid state, which can be attributed to modulation of Pt⋅⋅⋅Pt interactions that results in switching between optical and photoluminescent states. Incorporating responsive-at-metal species as dynamic components in nanostructured materials might facilitate response amplification, sensing, actuation, or self-healing processes.  相似文献   

19.
Eight dinuclear rhodium(II) complexes containing various, (primarily, polyfunctional) N-donor ligands in the trans position with respect to the Rh-Rh bond were synthesized and characterized by X-ray diffraction. In the Chinese-lantern dinuclear rhodium(II) pivalates, RhII 2 (μ-OOCCMe3)4(L)2 (L is 2,3-diaminopyridine (2), 7,8-benzoquinoline (4), 2,2′:6′,2″-terpyridine (5), N-phenyl-o-phenylenediamine (7)), and RhII 2 (μ-OOCCMe3)4L1L2 (3, L1 is 2-phenylpyridine, L2 = MeCN), the steric effects of the axial ligands are most strongly reflected in the Rh-N(L) and Rh-Rh bond lengths. The introduction of chelating ligands containing a conformationally rigid chelate ring leads to the cleavage of two carboxylate bridges to form the dinuclear double-bridged structure RhII 2 (μ- OOCCMe3)2(OCCMe3)22-L3)2, where L3 is 8-amino-2,4-dimethylquinoline (6). The reaction of complex 7 containing coordinated N-phenyl-o-phenylenediamine with pyrrole-2,5-dialdehyde afforded the new RhII 2(μ-OOCCMe3)4(L4)2 complex (8) containing 5-(1-phenyl-1-H-benzimidazol-2-yl)-1H-pyrrole-2-carbaldehyde (L4) in the axial positions of the dirhodium tetracarboxylate fragment. The coordinated diamine differs in reactivity from the free diamine. The reaction of the former with the above dialdehyde affords the [1+1]-condensation product, viz., 5-{(E)-[(2-anilinophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde, whereas the reaction of unsubstituted o-phenylenediamine gives 5-{(E)-[(2-aminophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde (L5) . The reaction of the latter with RhII 2(μ-OOCCMe3)4(H2O)2 affords the dinuclear complex RhII 2(μ-OOCCMe3)2(OOCCMe3)22-L5)2 (9), which is an analog of complex 6 containing only two bridging carboxylate groups.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 581–591, March, 2005.  相似文献   

20.
Spin crossover : The photomagnetic properties of a series of [{Fe(NCS)(py‐X)}2(bpypz)2] (NCS=thiocyanate, py=pyridine, X=4‐Mepy, py, 3‐Mepy, 3‐Clpy and 3‐Brpy, and bpypz=3,5‐bis(pyridine‐2‐yl)pyazolate) binuclear complexes are close to the antiferromagnetic response of [{Fe(NCS)(3,5‐dmpy)}3(bpypz)2] (3,5‐dmpy=3,5‐dimethylpyrazine), which is characterised by two iron(II) metal ions in a high‐spin (HS) electronic configuration (see figure).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号