共查询到20条相似文献,搜索用时 14 毫秒
1.
Rangel C Navarrete M Corchado JC Espinosa-García J 《The Journal of chemical physics》2006,124(12):124306
A modified and recalibrated potential energy surface for the gas-phase Cl+CH4-->HCl+CH3 reaction is reported and tested. It is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to updated experimental and theoretical stationary point properties and experimental forward thermal rate constants. From the kinetics point of view, the forward and reverse thermal rate constants and the activation energies were calculated using the variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 150-2500 K. The theoretical results reproduce the available experimental data, with a small curvature of the Arrhenius plot which indicates the role of tunneling in this hydrogen abstraction reaction. A dynamics study was also performed on this PES using quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found a noticeable internal energy in the coproduct methyl radical, both in the ground-state [CH4 (v=0)] and vibrationally excited [CH4 (v=1)] reactions. This CH3 internal energy was directly precluded in some experiments or oversimplified in previous theoretical studies using pseudotriatomic models. Second, our QCT calculations give HCl rotational distributions slightly hotter than those in experiment, but correctly describing the experimental trend of decreasing the HCl product rotation excitation in going from HCl (v'=0) to HCl (v'=1) for the CH4 (v=1) reaction. Third, the state specific scattering distributions present a reasonable agreement with experiment, although they tend to make the reaction more forward and backward scattered than found experimentally probably because of the hotter rotational distribution and the deficiencies of the QCT methods. 相似文献
2.
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group. 相似文献
3.
The rate constant for the reaction \documentclass{article}\pagestyle{empty}\begin{document}${\rm Cl} + {\rm CH}_4 \mathop {\longrightarrow}\limits^1 {\rm CH}_3 + {\rm HCl}$\end{document} has been determined over the temperature range of 200°–500°K using a discharge flow system with resonance fluorescence detection of atomic chlorine under conditions of large excess CH4. For 300° > T > 200°K the data are best fitted to the expression k1 = (8.2 ± 0.6) × 10?12 exp[?(1320 ± 20)/T] cm3/sec. Curvature is observed in the Arrhenius plot such that the effective activation energy increases from 2.6 kcal/mol at 200° < T < 300°K to 3.5 kcal/mol at 360° < T < 500°K. The data over the entire range may be fitted by the expression k1 = 8.6×10?18 T2.11 exp[?795/T]. These results are compared with other experimental studies and with a semiempirical transition state calculation. Their atmospheric significance is discussed. 相似文献
4.
The hydrogen abstraction reaction of Cl atoms with CF3CH2Cl (HCFC‐133a) is investigated by using density function theory and ab initio approach, and the rate constants are calculated by using the dual‐level direct dynamics method. Optimized geometries and frequencies of reactants, transition state, and products are computed at the B3LYP/6‐311+G(2d,2p) level. To refine the energetic information along the minimum energy path, single‐point energy calculations are carried out at the G3(MP2) level of theory. The interpolated single‐point energy method is employed to correct the energy profiles for the title reaction. The rate constants are evaluated by using the canonical variational transition state theory with a small‐curvature tunneling correction over a wide range of temperature, 200–2000 K. The variational effect for the reaction is moderate at low temperatures and very small at high temperatures. However, the tunneling correction has an important contribution in the lower temperature range. The agreement between calculated rate constants and available experimental values is good at lower temperatures but diverges significantly at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 661–667, 2012 相似文献
5.
A quantum-mechanical (QM) and quasiclassical trajectory (QCT) study was performed on the title reaction, using a pseudotriatomic ab initio based surface. Probabilities and integral cross sections present some clear peaks versus the collision energy E(col), which we assign to Feshbach resonances of the transition state, where the light H atom oscillates between the heavy Cl and CH(3) groups. For ground-state reactants, reactivity is essentially of quantum origin (QCT observables and oscillations are smaller, or much smaller, than QM ones), and the calculated integral cross section and product distributions are in reasonable agreement with the experiment. The reaction occurs through an abstraction mechanism, following both a direct and an indirect mechanism. The quasiclassical trajectory calculations show the participation of a short-lived collision complex in the microscopic reaction mechanism. Finally, QCT differential cross sections of Cl+CH(4)-->HCl (nu(')=0 and 1)+CH(3) oscillate versus E(col), whereas experimentally this only occurs for HCl (nu(')=1). This theoretical result and other oscillating properties found here could, however, be related to the existence of a Feshbach resonance for the production of HCl (nu(')=1), as suggested by experimentalists. 相似文献
6.
We present an electronic structure and dynamics study of the Cl + CH(4)--> HCl + CH(3) reaction. We have characterized the stationary points of the ground-state potential-energy surface using various electronic structure methods and basis sets. Our best calculations, CCSD(T) extrapolated to the complete basis-set limit based on geometries and harmonic frequencies obtained at the CCSD(T)/aug-cc-pvtz level, are in agreement with the experimental reaction energy and indirect measurements of the barrier height. Using ab initio information, we have reparametrized a semiempirical Hamiltonian so that the predictions of the improved Hamiltonian agree with the higher-level calculations in various regions of the potential-energy surface. This improved semiempirical Hamiltonian is then used to propagate quasiclassical trajectories and characterize the reaction dynamics. The good agreement of the calculated HCl rotational and angular distributions with the experiment indicates that reparametrizing semiempirical Hamiltonians is a promising approach to derive accurate potential-energy surfaces for polyatomic reactions. However, excessive energy leakage from the initial vibrational energy of the CH(4) molecule to the reaction coordinate in the trajectory calculations calls into question the suitability of the standard quasiclassical-trajectory method to describe energy partitioning in polyatomic reactions. 相似文献
7.
A beam containing CH(4), Cl(2), and He is expanded into a vacuum chamber where CH(4) is prepared via infrared excitation in a combination band consisting of one quantum of excitation each in the bending and torsional modes (nu(2)+nu(4)). The reaction is initiated by fast Cl atoms generated by photolysis of Cl(2) at 355 nm, and the resulting CH(3) and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization (REMPI). By comparing the relative amplitudes of the action spectra of Cl+CH(4)(nu(2)+nu(4)) and Cl+CH(4)(nu(3)) reactions, we determine that the nu(2)+nu(4) mode-driven reaction is at least 15% as reactive as the nu(3) (antisymmetric stretch) mode-driven reaction. The REMPI spectrum of the CH(3) products shows no propensity toward the formation of umbrella bend mode excited methyl radical, CH(3)(nu(2)=1), which is in sharp distinction to the theoretical expectation based on adiabatic correlations between CH(4) and CH(3). The rotational distribution of HCl(v=1) products from the Cl+CH(4)(nu(2)+nu(4)) reaction is hotter than the corresponding distribution from the Cl+CH(4)(nu(3)) reaction, even though the total energies of the two reactions are the same within 4%. An explanation for this enhanced rotational excitation of the HCl product from the Cl+CH(4)(nu(2)+nu(4)) reaction is offered in terms of the projection of the bending motion of the CH(4) reagent onto the rotational motion of the HCl product. The angular distributions of the HCl(nu=0) products from the Cl+CH(4)(nu(2)+nu(4)) reaction are backward scattered, which is in qualitative agreement with theoretical calculation. Overall, nonadiabatic product vibrational correlation and mode specificity of the reaction indicate that either the bending mode or the torsional mode or both modes are strongly coupled to the reaction coordinate. 相似文献
8.
We study the reaction Cl + CH(4)--> HCl + CH(3) using a 2-D potential energy surface obtained by fitting a double Morse analytical function to high level (CCSD(T)/cc-pVTZ//MP2/cc-pVTZ)ab initio data. Dynamics simulations are performed in hyperspherical coordinates with the close-coupled equations being solved using R-matrix propagation. Quantum contributions from spectator modes are included via a harmonic zero-point correction to the ab initio data prior to fitting the potential. This is the first time this method has been applied to a heavy-light-heavy reaction and the first time it has been used to study differential cross sections. We find thermal rate constants and state-to-state differential cross sections which are in good agreement with experimental data. We discuss the applicability of our method to the study of kinetic isotope effects (KIEs), which we derive for the CH(4)/CD(4) substitution. The calculated KIE compares favourably with experiment. Finally, we discuss the sensitivity of the results of dynamics simulations on the accuracy of the fitted potential. 相似文献
9.
Nonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl(2P(3/2)) and Cl*(2P(1/2)) products. Reaction was initiated by photodissociation of CH(3)I at 266 nm within a single expansion of a dilute mixture of CH(3)I and HCl in argon, giving a mean collision energy of 7800 cm(-1) in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements. The fraction of the total yield of Cl(2P(J)) atoms formed in the J=1/2 level at this collision energy was 0.150+/-0.024, and must arise from nonadiabatic dynamics because the ground potential energy surface correlates to CH(4)+Cl(2P(3/2)) products. 相似文献
10.
A theoretical study is reported of the Cl+CH3OH-->CH2OH+HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies, and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. M?ller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol. 相似文献
11.
The bimolecular rate constant for the direct reaction of chlorine atoms with methane was measured at 25°C by using the very-low-pressure-pyrolysis technique. The rate constant was found to be In addition, the ratio k1/k?1 was observed with about 25% accuracy: K1(298) = 1.3 ± 0.3. This gives a heat of formation of the methyl radical ΔH° f 298(CH3) = 35.1 ± 0.15 kcal/mol. A bond dissociation energy BDE (CH3 ? H) = 105.1 ± 0.15 kcal/mol in good agreement with literature values was obtained. 相似文献
12.
The bimolecular rate constant for the title reaction has been measured by very-low-pressure reactor techniques at 233 < T K < 338. The equilibrium constant has also been measured between 253 and 338 K. Our rate constants are in excellent agreement with recent measurements using very different techniques and reaction conditions, and the general agreement probably makes this one of the most accurately measured rateconstants. Transition state models of the reaction rule out a bent TS in favor of a TS with colinear Cl···H···C bonds. The curvature at higher temperatures (>350 K) is quantitatively accounted for by transition state theory analysis. Tunneling is shown not to play a role. The measured values of K1 allow an experimental value of S° (CH3) to be fixed to only ±2.4 e.u. However, using known values of S° for all species gives ΔH°f298(CH3.) = 35.1 plusmn; 0.1 kcal/mol in excellent agreement with other measured values. 相似文献
13.
Shuhui Yin Mingxing Guo Lei Li Yinghui Zhang Xiangping Li 《International journal of quantum chemistry》2011,111(15):4400-4409
We present a quasi‐classical trajectory (QCT) study on product polarization for the reaction F(2P) + HCl(v = 0, j = 0) → HF + Cl(2P) on a recently computed 12 A′ ground‐state surface reported by Deskevich et al. J Chem Phys, 2006, 124, 224303. Four polarization dependent generalized differential cross‐sections (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), and (2π/σ)(dσ21?/dωt) were calculated in the center‐of‐mass frame at four different collision energies. The obtained P(θr), P(?r), and P(θr, ?r), which denote respectively the distribution of angles between k and j′, the distribution of dihedral angle denoting k‐k′‐j′ correlation and the angular distribution of product rotational vectors in the form of polar plots, indicate that the degree of rotational alignment of the product HF molecule is strong and the degree of the rotational alignment decreases as collision energy increases. The product rotational angular momentum vector j′ is not only aligned, but also oriented along the y‐axis, and the molecular rotation of the product prefers an in‐plane reaction mechanism rather than the out‐of‐plane mechanism. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
14.
The hydrogen or deuterium atom abstraction reactions between Cl((2)P(3/2)) and methane, or its deuterated analogues CD(4) and CH(2)D(2), have been studied at mean collision energies around 0.34 eV. The experiments were performed in a coexpansion of molecular chlorine and methane in helium, with the atomic Cl reactants generated by polarized laser photodissociation of Cl(2) at 308 nm. The Cl-atom reactants and the methyl radical products were detected using (2+1) resonantly enhanced multiphoton ionization, coupled with velocity-map ion imaging. Analysis of the ion images reveals that in single-beam experiments of this type, careful consideration must be given to the spread of reagent velocities and collision energies. Using the reactions of Cl with CH(4), CD(4), and CH(2)D(2), as examples, it is shown that the data can be fitted well if the reagent motion is correctly described, and the angular scattering distributions can be obtained with confidence. New evidence is also provided that the CD(3) radicals from the Cl+CD(4) reaction possess significant rotational alignment under the conditions of the present study. The results are compared with previous experimental and theoretical works, where these are available. 相似文献
15.
Zhengyu Zhou Guang Chen Xingmin Zhou Hui Fu 《International journal of quantum chemistry》2002,87(1):49-57
Density function theory has been applied to alkyl radical reaction to get helpful data for its geometric parameters, energy, and vibrational frequency compared with results obtained by ab initio methods and experimental values. The geometry optimization of the transition state, the precursor complex and the successor complex were performed at the 6‐311G* basis set level. The transition state of the CH4Cl system of the reaction computed was in agreement with the prediction of Benson. From analysis of the vibration frequency and the net charge on the atom of the precursor complex, transition state, successor complex and the isolated state, the reaction mechanism was derived which we complicated with the bond‐rupture electron‐transfer theory. The atom H in molecule HCl attacks the atom C, forming a transition state via the precursor complex and the electron transfer happens in the precursor complex. The reaction rate of the electron transfer determines the rate of the whole reaction to a certain extent, and active energy, electronic coupling matrix element, and reorganization energy were obtained. © 2001 Wiley Periodicals, Inc. Int J Quantum Chem, 2001 相似文献
16.
Politzer P Burda JV Concha MC Lane P Murray JS 《The journal of physical chemistry. A》2006,110(2):756-761
The "reaction force" F(R(c)) is the negative derivative of a system's potential energy V(R(c)) along the intrinsic reaction coordinate of a process. If V(R(c)) goes through a maximum, as is commonly the case, then F(R(c)) has a characteristic profile: a negative minimum followed by zero at the transition state and then a positive maximum. These features reflect four phases of the reaction: an initial one of reactant preparation, followed by two of transition to products, and then relaxation of the latter. In this study, we have analyzed, in these terms, a gas-phase S(N)2 substitution, selected to be CH3Cl + H2O --> CH3OH + HCl. We examine, at the B3LYP/6-31G level, the geometries, energetics, and molecular surface electrostatic potentials, local ionization energies, and internal charge separation. 相似文献
17.
Jing Yang Qian Shu Li Shaowen Zhang 《International journal of quantum chemistry》2007,107(10):1999-2005
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of CH4 + O3 → HOOO +CH3. The geometries of all the stationary points are optimized at MPW1K/6‐31+G(d,p), MPWB1K/6‐31+G(d,p), and BHandHLYP/6‐31+G(d,p) levels of theory. The energies are refined at a multi‐high‐level method. The extended Arrhenius expression fitted from the CVT/SCT and μVT/Eckart rate constants of ozonolysis of methane in the temperature range 200–2500 K are kCVT/SCT(T) = 5.96 × 10?29T4.49e(?17321.3/T) and kμVT/Eckart(T) = 7.92 × 10?29T4.46e(?17301.7/T), respectively. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
18.
Recent experimental results on the thermal decomposition of N2O5 in N2 are evaluated in terms of unimolecular rate theory. A theoretically consistent set of fall-off curves is constructed which allows to identify experimental errors or misinterpretations. Limiting rate constants k0 = [N2] 2.2 × 10?3 (T/300)?4.4 exp(?11,080/T) cm3/molec·s over the range of 220–300 K, k∞ = 9.7 × 1014 (T/300)+0.1 exp(?11,080/T) s?1 over the range of 220–300 K, and broadening factors of the fall-off curve Fcent = exp(-T/250) + exp(?1050/T) over the range of 220–520 K have been derived. NO2 + NO3 recombination rate constants over the range of 200–300 K are krec,0 = [N2] 3.7 × 10?30 (T/300)?4.1 cm6/molec2·s and krec,∞ = 1.6 × 10?12 (T/300)+0.2 cm3/molec·s. 相似文献
19.
Studies of the reaction of Br + propylene to produce HBr and allyl radical were made using VLPR (Very Low Pressure Reactor) over the range 263–363 K. Apparent bimolecular rate constants k were found to vary in an inverse manner with the initial concentration of bromine atoms introduced into the reactor. Plots of k against [Br] give straight lines whose intercepts were taken to be the true bimolecular, metathesis rate constant k1. The reaction scheme is where k2 ? k1 and k?1 [HBr] is negligibly small under our conditions. Arrhenius parameters for k1 were assigned for linear and bent transition states and shown to give excellent fits to the observed intercepts. where θ = 2.303 RT (kcal mol?1). The dependence of k on [Br] is accounted for in terms of the reactivity of Br* (2P1/2) produced in the microwave discharge. The activation energy for the metathesis reaction of Br* with propylene is shown to be very small. 相似文献
20.
Rotationally resolved infrared emission spectra of HCl(v=1-3) in the reaction of Cl+CH3SH, initiated with radiation from a laser at 308 nm, are detected with a step-scan Fourier-transform spectrometer. Observed rotational temperature of HCl(v=1-3) decreases with duration of reaction due to collisional quenching; a short extrapolation to time zero based on data in the range 0.25-4.25 micros yields a nascent rotational temperature of 1150+/-80 K. The rotational energy averaged for HCl(v=1-3) is 8.2+/-0.9 kJ mol(-1), yielding a fraction of available energy going into rotation of HCl, fr=0.10+/-0.01, nearly identical to that of the reaction Cl+H(2)S. Observed temporal profiles of the vibrational population of HCl(v=1-3) are fitted with a kinetic model of formation and quenching of HCl(v=1-3) to yield a branching ratio (68+/-5):(25+/-4):(7+/-1) for formation of HCl(v=1):(v=2):(v=3) from the title reaction and its thermal rate coefficient k(2a)=(2.9+/-0.7)x10(-10) cm(3) molecule(-1) s(-1). Considering possible estimates of the vibrational population of HCl(v=0) based on various surprisal analyses, we report an average vibrational energy 36+/-6 kJ mol(-1) for HCl. The fraction of available energy going into vibration of HCl is f(v)=0.45+/-0.08, significantly greater than a value fv=0.33+/-0.06 determined previously for Cl+H2S. Reaction dynamics of Cl+H(2)S and Cl+CH3SH are compared; the adduct CH3S(Cl)H is likely more transitory than the adduct H(2)SCl. 相似文献