首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Modified incompressible SPH method for simulating free surface problems   总被引:1,自引:0,他引:1  
An incompressible smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate free surface incompressible fluid problems. The governing equations are mass and momentum conservation that are solved in a Lagrangian form using a two-step fractional method. In the first step, velocity field is computed without enforcing incompressibility. In the second step, a Poisson equation of pressure is used to satisfy incompressibility condition. The source term in the Poisson equation for the pressure is approximated, based on the SPH continuity equation, by an interpolation summation involving the relative velocities between a reference particle and its neighboring particles. A new form of source term for the Poisson equation is proposed and also a modified Poisson equation of pressure is used to satisfy incompressibility condition of free surface particles. By employing these corrections, the stability and accuracy of SPH method are improved. In order to show the ability of SPH method to simulate fluid mechanical problems, this method is used to simulate four test problems such as 2-D dam-break and wave propagation.  相似文献   

2.
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered‐mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix‐free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical model for electro-osmotic flow is described. The advecting velocity field is computed by solving the incompressible Navier–Stokes equation. The method uses a semi-implicit multigrid algorithm to compute the divergence-free velocity at each grid point. The finite differences are second-order accurate and centered in space; however, the traditional second-order compact finite differencing of the Poisson equation for the pressure field is shown not to conserve energy in the inviscid limit. We have designed a non-compact finite differencing for the Laplacian in the pressure equation that allows exact energy conservation and affords second-order accuracy. The model also incorporates a new numerical method for passive scalar advection, called parcel advection, which accurately predicts the evolution of a passively traveling scalar pulse without requiring the addition of any artificial diffusion. The algorithm is used to confirm the experimentally observed asymmetric concentration profile that arises when an external pressure drop is imposed on electro-osmotic flow. Received 25 January 2001 and accepted 10 May 2002 Published online 30 October 2002 Communicated by H.J.S. Fernando  相似文献   

4.
The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ???=?9.3?m/s and Re???=?2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10?kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3?kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5??99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.  相似文献   

5.
This paper presents numerical results for laminar, incompressible and non-isothermal polymer melt flow in sudden expansions. The mathematical model includes the mass, momentum and energy conservation laws within the framework of a generalized Newtonian formulation. Two constitutive relations are adopted to describe the non-Newtonian behavior of the flow, namely Cross and Modified Arrhenius Power-Law models. The governing equations are discretized using the finite difference method based on central, second-order accurate formulas for both convective and diffusive terms. The pressure–velocity coupling is treated by solving a Poisson equation for pressure. The results are presented for two commercial polymers and demonstrate that important flow parameters, such as pressure drop and viscosity distribution, are strongly affected by heat transfer features.  相似文献   

6.
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.  相似文献   

7.
In a recent paper Gresho and Sani showed that Dirichlet and Neumann boundary conditions for the pressure Poisson equation give the same solution. The purpose of this paper is to confirm this (for one case at least) by numerically solving the pressure equation with Dirichlet and Neumann boundary conditions for the inviscid stagnation point flow problem. The Dirichlet boundary condition is obtained by integrating the tangential component of the momentum equation along the boundary. The Neumann boundary condition is obtained by applying the normal component of the momentum equation at the boundary. In this work solutions for the Neumann problem exist only if a compatibility condition is satisfied. A consistent finite difference procedure which satisfies this condition on non-staggered grids is used for the solution of the pressure equation with Neumann conditions. Two test cases are computed. In the first case the velocity field is given from the analytical solution and the pressure is recovered from the solution of the associated Poisson equation. The computed results are identical for both Dirichlet and Neumann boundary conditions. However, the Dirichlet problem converges faster than the Neumann case. In the second test case the velocity field is computed from the momentum equations, which are solved iteratively with the pressure Poisson equation. In this case the Neumann problem converges faster than the Dirichlet problem.  相似文献   

8.
We present a numerical scheme to solve the incompressible Navier–Stokes equations with open boundary condition. After replacing the incompressibility constraint by the pressure Poisson equation, the key is how to give an appropriate boundary condition for the pressure Poisson equation. We propose a new boundary condition for the pressure on the open boundary. Some numerical experiments are presented to verify the accuracy and stability of scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. The method is based on introducing intermediate compressibility into a projection scheme to obtain a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the continuity equation for time-implicit Navier–Stokes algorithms. An iterative scheme is used to simultaneously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder.  相似文献   

10.
A numerical method for predicting viscous flows in complex geometries has been presented. Integral mass and momentum conservation equations are deploved and these are discretized into algebraic form through numerical quadrature. The physical domain is divided into a number of non-orthogonal control volumes which are isoparametrically mapped on to standard rectangular cells. Numerical integration for unsteady mementum equations is performed over such non-orthogonal cells. The explicitly advanced velocity components obtained from unsteady momentum equations may not necessarily satisfy the mass conservation condition in each cell. Compliance of the mass conservation equation and the consequent evolution of correct pressure distribution are accomplished through an iterative correction of pressure and velocity till divergence-free condition is obtained in each cell. The algorithm is applied on a few test problems, namely, lid-driven square and oblique cavities, developing flow in a rectangular channel and flow over square and circular cylinders placed in rectangular channels. The results exhibit good accuracy and justify the applicability of the algorithm. This Explicit Transient Algorithm for Flows in Arbitrary Geometry is given a generic name EXTRAFLAG.  相似文献   

11.
A time-accurate, finite volume method for solving the three-dimensional, incompressible Navier-Stokes equations on a composite grid with arbitrary subgrid overlapping is presented. The governing equations are written in a non-orthogonal curvilinear co-ordinate system and are discretized on a non-staggered grid. A semi-implicit, fractional step method with approximate factorization is employed for time advancement. Multigrid combined with intergrid iteration is used to solve the pressure Poisson equation. Inter-grid communication is facilitated by an iterative boundary velocity scheme which ensures that the governing equations are well-posed on each subdomain. Mass conservation on each subdomain is preserved by using a mass imbalance correction scheme which is secondorder-accurate. Three test cases are used to demonstrate the method's consistency, accuracy and efficiency.  相似文献   

12.
Two domain-adaptive finite difference methods are presented and applied to study the dynamic response of incompressible, inviscid, axisymmetric liquid membranes subject to imposed sinusoidal pressure oscillations. Both finite difference methods map the time-dependent physical domain whose downstream boundary is unknown onto a fixed computational domain. The location of the unknown time-dependent downstream boundary of the physical domain is determined from the continuity equation and results in an integrodifferential equation which is non-linearly coupled with the partial differential equations which govern the conservation of mass and linear momentum and the radius of the liquid membrane. One of the finite difference methods solves the non-conservative form of the governing equations by means of a block implicit iterative method. This method possesses the property that the Jacobian matrix of the convection fluxes has an eigenvalue of algebraic multiplicity equal to four and of geometric multiplicity equal to one. The second finite difference procedure also uses a block implicit iterative method, but the governing equations are written in conservation law form and contain an axial velocity which is the difference between the physical axial velocity and the grid speed. It is shown that these methods yield almost identical results and are more accurate than the non-adaptive techniques presented in Part I. It is also shown that the actual value of the pressure coefficient determined from linear analyses can be exceeded without affecting the stability and convergence of liquid membranes if the liquid membranes are subjected to sinusoidal pressure variations of sufficiently high frequencies.  相似文献   

13.
In this paper we address the problem of the implementation of boundary conditions for the derived pressure Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically meaningful pressure boundary conditions consistent with the Navier-Stokes equations are imposed. Since second derivatives appear in this formulation, the conforming finite element method requires C1 continuity. However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need not be included, thus allowing the use of more conventional C0 elements. Numerical results using this approach for a wall-driven contained flow within a square cavity verify the validity of the approach. Although the results were obtained for a two-dimensional problem using the p-version of the finite element method, the approach presented here is general and remains valid for the conventional h-version as well as three-dimensional problems.  相似文献   

14.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, a weakly compressible formulation of the Navier-Stokes equations is developed and examined for the solution of fluid-structure interaction (FSI) problems. Newtonian viscous fluids under isothermal conditions are considered, and the Murnaghan-Tait equation of state is employed for the evaluation of mass density changes with pressure. A pressure-based approach is adopted to handle the low Mach number regime, ie, the pressure is chosen as primary variable, and the divergence-free condition of the velocity field for incompressible flows is replaced by the continuity equation for compressible flows. The approach is then embedded into a partitioned FSI solver based on a Dirichlet-Neumann coupling scheme. It is analytically demonstrated how this formulation alleviates the constraints of the instability condition of the artificial added mass effect, due to the reduction of the maximal eigenvalue of the so-called added mass operator. The numerical performance is examined on a selection of benchmark problems. In comparison to a fully incompressible solver, a significant reduction of the coupling iterations and the computational time and a notable increase in the relaxation parameter evaluated according to Aitken's Δ2 method are observed.  相似文献   

16.
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J‐G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher‐order) finite elements. This method can achieve high‐order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Solving the incompressible Navier–Stokes equations requires special care if the velocity field is not discretely divergence-free. Approximate projection methods and many pressure Poisson equation methods fall into this category. The approximate projection operator does not dampen high frequency modes that represent a local decoupling of the velocity field. For robust behavior, filtering is necessary. This is especially true in two instances that were studied: long-term integrations and large density jumps. Projection-based filters and velocity-based filters are derived and discussed. A cell-centered velocity filter, in conjunction with a vertex-projection filter, was found to be the most effective in the widest range of cases. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
A numerical technique (FGVT) for solving the time-dependent incompressible Navier–Stokes equations in fluid flows with large density variations is presented for staggered grids. Mass conservation is based on a volume tracking method and incorporates a piecewise-linear interface reconstruction on a grid twice as fine as the velocity–pressure grid. It also uses a special flux-corrected transport algorithm for momentum advection, a multigrid algorithm for solving a pressure-correction equation and a surface tension algorithm that is robust and stable. In principle, the method conserves both mass and momentum exactly, and maintains extremely sharp fluid interfaces. Applications of the numerical method to prediction of two-dimensional bubble rise in an inclined channel and a bubble bursting through an interface are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.  相似文献   

20.
A one-dimensional momentum conservation equation for a straight jet driven by an electrical field is developed. It is presented in terms of a stress component, which can be applied to any constitutive relation of fluids. The only assumption is that the fluid is incompressible. The results indicate that both the axial and radial constitutive relations are required to close the governing equations of the straight charged jet. However, when the trace of the extra stress tensor is zero, only the axial constitutive relation is required. It is also found that the second normal stress difference for the charged jet is always zero. The comparison with other developed momentum equations is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号