首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
FOURIERNONLINEARGALERKINAPPROXIMATIONFORTHETWODIMENSIONALNAVIER-STOKESEQUATIONSHouYanren(侯延仁)(ReceivedJune1.1995.Communicated...  相似文献   

2.
关于近似惯性流形及其数值方法的研究   总被引:9,自引:1,他引:8  
伍渝江 《力学进展》1994,24(2):145-153
本文简述了近年来在无穷维动力系统研究中一些数学理论的进展状况,主要目的是结合二维Navier-Stokes方程讨论近似惯性流形及其数值方法的构造和意义.   相似文献   

3.
运用DSMC(Direct Simulation Monte—Carlo)方法从分子运动论层次对大膨胀比、喉部转角为尖角的微喷管流动现象进行模拟,考察来流总压对喷管性能的影响,并与Navier—Stokes方程运算结果、实验结果进行比较。研究表明:在模拟微型喷管的流动现象时,DSMC方法比N—S方程更加适用。  相似文献   

4.
Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M ≈0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin (DG) discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to an incompressible formulation. Our contributions to the state of the art are twofold: Firstly, we present a high-performance DG solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures with Flop/Byte ratios significantly larger than 1. The performance results presented in this work focus on the node-level performance, and our results suggest that there is great potential for further performance improvements for current state-of-the-art DG implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows. The results indicate a clear performance advantage of the incompressible formulation over the compressible one.  相似文献   

5.
在Navier-Stokes方程和k-ω湍流模型的基础上,利用流线迎风有限元方法结合ALE动网格技术对亚临界雷诺数下的圆柱受迫振动问题开展了数值模拟研究。本文的数值模型成功模拟了Re=5000条件下,圆柱发生受迫振动时尾迹区内的2S,2P和P+S尾流模式;对Re=10000情况下,无量纲振幅分别为0.3,0.4,0.5的圆柱受迫振动问题开展了数值模拟,分析了给定振幅条件下圆柱受力随振动频率的变化关系以及受迫振动的锁定区间。以上数值计算结果与Gopalkrishnan (1993)的实验结果基本符合。研究结果表明,二维数值模型能够基本正确地反映出圆柱发生受迫振动时的涡激振动特性以及有关的受力变化趋势,为今后进一步开展三维数值分析工作奠定了基础。  相似文献   

6.
Least-squares, SUPG and Galerkin methods are compared for a model convection problem in the context of smooth and discontinuous solutions. Our experiments focus on the impact of boundary condition implementation and grid orientation upon these methods, as well as their relative performance for both types of solutions.  相似文献   

7.
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the local- truncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases. The project supported by the China NKBRSF (2001CB409604) The English text was polished by Yunming Chen  相似文献   

8.
A high-order discontinuous Galerkin (DG) method is proposed in this work for solving the two-dimensional steady and unsteady incompressible Navier-Stokes (INS) equations written in conservative form on arbitrary grids. In order to construct the interface inviscid fluxes both in the continuity and in the momentum equations, an artificial compressibility term has been added to the continuity equation for relaxing the incompressibility constraint. Then, as the hyperbolic nature of the INS equations has been recovered, the local Lax-Friedrichs (LLF) flux, which was previously developed in the context of hyperbolic conservation laws, is applied to discretize the inviscid term. Unlike the traditional artificial compressibility method, in this work, the artificial compressibility is introduced only for the construction of the inviscid numerical fluxes; therefore, a consistent discretization of the INS equations is obtained, irrespective of the amount of artificial compressibility used. What is more, as the LLF flux can be obtained directly and straightforward, no numerical iteration for solving an exact Riemann problem is entailed in our method. The viscous term is discretized by the direct DG method, which was developed based on the weak formulation of the scalar diffusion problems on structured grids. The performance and the accuracy of the method are demonstrated by computing a number of benchmark test cases, including both steady and unsteady incompressible flow problems. Due to its simplicity in implementation, our method provides an attractive alternative for solving the INS equations on arbitrary grids.  相似文献   

9.
We describe some experiences using interative solution methods of GMRES type to solve the discretized Navier-Stokes equations. The discretization combined with a pressure correction scheme leads to two different systems of equations: the momentum equations and the pressure equation. It appears that a fast solution method for the pressure equation is obtained by applying the recently proposed GMRESR method, or GMRES combined with a MILU preconditioner. The diagonally scaled momentum equations are solved by GMRES(m), a restarted version of GMRES.  相似文献   

10.
1TheProposalofProblemWeconsiderafamilyoflinearelasticshelsofthicknes2ε,alhavingthesamemiddlesurfaceS=φ(ω)R3,whereωR2isaboun...  相似文献   

11.
椭圆截面曲线管道内二次流动的Galerkin解   总被引:2,自引:0,他引:2  
薛雷  唐锦春 《力学学报》1998,30(6):648-655
推导了任意空间曲线直角坐标系内的张量流体力学方程.采用Galerkin方法和计算机符号运算技术求解了椭圆截面螺旋管道(电括弯管、扭管)内的二次流动.计算结果表明了Galerkin方法的适用和有效性,克服了振动法的小参数局限.对所得结果的分析揭示了椭圆截面螺旋管道内流动的特性,给出了k,r和Re较大情况的研究结论.  相似文献   

12.
We show that the continuous (in time) form of the projection-3 scheme proposed in Reference 2 is not a proper approximation of the unsteady Navier-Stokes equations. Hence, the projection-3 scheme and its variants are not appropriate for the numerical computation of the Navier-Stokes equations.  相似文献   

13.
A new symmetric formulation of the two-dimensional shallow water equations and a streamline upwind Petrov–Galerkin (SUPG) scheme are developed and tested. The symmetric formulation is constructed by means of a transformation of dependent variables derived from the relation for the total energy of the water column. This symmetric form is well suited to the SUPG approach as seen in analogous treatments of gas dynamics problems based on entropy variables. Particulars related to the construction of the upwind test functions and an appropriate discontinuity-capturing operator are included. A formal extension to the viscous, dissipative problem and a stability analysis are also presented. Numerical results for shallow water flow in a channel with (a) a step transition, (b) a curved wall transition and (c) a straight wall transition are compared with experimental and other computational results from the literature.  相似文献   

14.
In this paper, for two-dimensional unsteady incompressible flow, the Navier-Stokes equations without convection term are derived by the coordinate transformation along the streamline characteristic. The third-order Runge-Kutta method along the streamline is introduced to discrete the alternative Navier-Stokes equations in time, and spacial discretization is carried out by the Galerkin method, and then, the third-order accuracy finite element method is obtained. Meanwhile, the streamline velocity is uniformly approximated by initial velocity in each time step in order to reduce update frequency of total element matrix and improve calculation efficiency. Finally, some classic unsteady flow examples are calculated and analyzed by different calculation methods, which further demonstrate that the present method has more advantages in stability, permissible time step, dissipation, computational cost, and accuracy. The code can be downloaded at https://doi.org/10.13140/RG.2.2.27706.44484 .  相似文献   

15.
In this paper, a segregated finite element scheme for the solution of the incompressible Navier-Stokes equations is proposed which is simpler in form than previously reported formulations. A pressure correction equation is derived from the momentum and continuity equations, and equal-order interpolation is used for both the velocity components and pressure. Algorithms such as this have been known to lead to checkerboard pressure oscillations; however, the pressure correction equation of this scheme should not produce these oscillations. The method is applied to several laminar flow situations, and details of the methods used to achieve converged solutions are given.  相似文献   

16.
By the aid of an idea of the weighted ENO schemes, some weight-type high-resolution difference schemes with different orders of accuracy are presented in this paper by using suitable weights instead of the minmod functions appearing in various TVD schemes. Numerical comparisons between the weighted schemes and the non-weighted schemes have been done for scalar equation, one-dimensional Euler equations, two-dimensional Navier-Stokes equations and parabolized Navier-Stokes equations. The project supported by the National Natural Science Foundation of China (19582007) and Partly by State Key Laboratory of Scientific/Engineering Computing.  相似文献   

17.
A new Galerkin/Least-Squares (GLS) stabilized finite element method is presented for computing viscoelastic flows of complex fluids described by the conformation tensor; it extends the well-established GLS method for computing flows of incompressible Newtonian fluids. GLS methods are attractive for large-scale computations because they yield linear systems that can be solved easily with iterative solvers (e.g., the Generalized Minimum Residual method) and because they allow simple combinations of interpolation functions that can be conveniently and efficiently implemented on modern distributed-memory cache-based clusters.Like other state-of-the-art methods for computing viscoelastic flows (e.g., DEVSS-TG/SUPG), the new GLS method introduces a separate variable to represent the velocity gradient; with the aid of this variable, the conservation equations of mass, momentum, conformation, and the definition of velocity gradient are converted into a set of first-order partial differential equations in four unknown fields—pressure, velocity, conformation, and velocity gradient. The unknown fields are represented by low-order (continuous piecewise linear or bilinear) finite element basis functions.The method is applied to the Oldroyd-B constitutive equation and is tested in two benchmark problems—flow in a planar channel and flow past a cylinder in a channel. Results show that (1) the mesh-convergence rate of GLS is comparable to the DEVSS-TG/SUPG method; (2) the LS stabilization permits using equal-order basis functions for all fields; (3) GLS handles effectively the advective terms in the evolution equation of the conformation tensor; and (4) GLS yields accurate results at lower computational costs than DEVSS-type methods.  相似文献   

18.
Laminar fluid flow in rows of plate elements with staggered arrangement has been investigated by solving the complete Navier-Stokes equations using numerical methods. The results have been compared with those obtained on the basis of boundary-layer simplifications. The theoretical pressure-drop values compare well with available numerical and experimental data  相似文献   

19.
In the present paper, the author shows that the predictor/multi‐corrector (PMC) time integration for the advection–diffusion equations induces numerical diffusivity acting only in the streamline direction, even though the equations are spatially discretized by the conventional Galerkin finite element method (GFEM). The transient 2‐D and 3‐D advection problems are solved with the PMC scheme using both the GFEM and the streamline upwind/Petrov Galerkin (SUPG) as the spatial discretization methods for comparison. The solutions of the SUPG‐PMC turned out to be overly diffusive due to the additional PMC streamline diffusion, while the solutions of the GFEM‐PMC were comparatively accurate without significant damping and phase error. A similar tendency was seen also in the quasi‐steady solutions to the incompressible viscous flow problems: 2‐D driven cavity flow and natural convection in a square cavity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A new Lagrangian finite element formulation is presented for time-dependent incompressible free surface fluid flow problems described by the Navier-Stokes equations. The partial differential equations describing the continuum motion of the fluid are discretized using a Galerkin procedure in conjunction with the finite element approximation. Triangular finite elements are used to represent the dependent variables of the problem. An effective time integration procedure is introduced and provides a viable computational method for solving problems with equality of representation of the pressure and velocity fields. Its success has been attributed to the strict enforcement of the continuity constraint at every stage of the iterative process. The capabilities of the analysis procedure and the computer programs are demonstrated through the solution of several problems in viscous free surface fluid flow. Comparisons of results are presented with previous theoretical, numerical and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号