首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation of 10′-Apo-β-carotene-10′-ol and (3R)-10′-Apo-β-carotene-3,10′-diol (Galloxanthin) from Rose Flowers The novel (all-E)-10′-apol-β-carotene-10′-ol ( 2 ) and (all-E,3R)-10′-apo-β-carotene-3,10′-diol ( 5 ) have been isolated from petals of one yellow species and various whitish or yellow blend varieties of rose cultivars. Each (all-E)-compound is accompanied by a (Z)-isomer, probably the (9Z)-isomer. Diol 5 proved to be identical with galloxanthin, an apo-10′-carotenol previously isolated from the retina of chicken.  相似文献   

2.
1,2-Epoxycarotenoids Isolation of 1′,2′-Epoxy-1′,2′-dihydro-ε,ψ-carotene from a ‘Delta Mutant’ Tomato From ‘Delta Mutant’ tomatoes, optically active 1′,2′-epoxy-1′,2′-dihydro-ε,ψ-carotene ( 7 ) was isolated. According to the CD data, the configuration is 6R and presumably 2′S.  相似文献   

3.
Synthesis of (R)-β, β-Caroten-2-ol and (2R, 2′R)-β, β-Carotene-2,2′-diol Starting from geraniol, the two carotenoids (R)-β, β-caroten-2-ol ( 1 ) and (2R, 2′R)-β, β-carotene-2,2′-diol ( 3 ) were synthesized. The optically active cyclic building block was obtained by an acid-catalysed cyclisation of the epoxide (R)- 4 . The enantiomeric excess of the product was > 95 %.  相似文献   

4.
(S)-5,5,5,5′,5′,5′-Hexafluoroleucine ((S)- 13 ) of 81 % ee is prepared from hexafluoroacetone ( l ) and ethyl bromopyruvate (= ethyl 2-oxopropanoate) in 7 steps with an overall yield of 18% (Schemes 1 and 2). Key step in this sequence is the highly enantioselective reduction of the carbonyl group in α-keto ester 4 either by bakers' yeast (91 % ee) or by ‘catecholborane’ 6 utilizing an oxazaborolidine catalyst, yielding hydroxy ester (R)- 5 with 99% ee. The absolute configuration was determined by X-ray analysis of the HCl adduct (S,R)- 9b of (2S)-N-[(R)- l-phenylethyl]-5,5,5,5′,5′,5′-hexafluoroleucine ethyl ester.  相似文献   

5.
We report the synthesis of a modified 8mer RNA sequence, (C‐C‐C‐C‐A‐C‐C‐(2′‐thio)A)‐RNA 5′‐(dihydrogen phosphate) ( 9 ) containing a 3′‐terminal 2′‐thioadenosine (Schemes 2 and 3), and its spontaneous and site‐specific aminoacylation with the weakly activated amino acid thioester H Phe SPh ( 12 ). This reaction, designed in analogy to the ‘native chemical ligation’ of oligopeptides, occurs efficiently in buffered aqueous solutions and under a wide range of conditions (Table). At pH values between 5.0 and 7.4, two products, the 3′‐O‐monoacylated and the 3′‐O,2′‐S‐diacylated RNA sequences 10 and 11 are formed fast and quantitatively (Scheme 4). At pH 7.4 and 37°, the 3′‐O‐monoacylated product 10 is formed as major product in situ by selective hydrolysis of the O,S‐diacylated precursor 11 . Additionally, the preparation and isolation of the relevant 3′‐O‐monoacylated product 10 was optimized at pH 5. The here presented concept could be employed for a straightforward aminoacylation of analogously modified tRNAs.  相似文献   

6.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

7.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

8.
Some 2′-deoxy-1′,2′-seco-D-ribosyl (5′→3′)oligonucleotides (= 1′,2′-seco-DNA), differing from natural DNA only by a bond scission between the centers C(1′) and C(2′), were synthesized and studied in order to compare their structure properties and pairing behavior with those of corresponding natural DNA and homo-DNA oligonucleotides (2′,3′-dideoxy-β-D-glucopyranosyl oligonucleotides). Starting from (?)-D-tartaric acid, 2′-deoxy-1′,2′-secoadenosine derivative 9a and 1′,2′-secothymidine ( 9b ) were obtained in pure crystalline form. Using the phosphoramidite variant of the phosphite-triester method, a dinucleotide monophosphate 1′,2′-seco-d(T2) was synthesized in solution, while oligonucleotides 1′,2′-seco-d[(AT)6], 1′,2′-seco-d(A10) and 1′,2′-seco-d(T10) were prepared on solid phase with either automated or manual techniques. Results of UV- and CD-spectroscopic as well as gel-electrophoretic studies indicated that neither adenine-thymine base pairing (as observed in natural DNA and homo-DNA), nor the adenine-adenine base pairing (as observed in homo-DNA) was effective in 1′,2′-seco-DNA, Furthermore, hybrid pairing was observed neither between 1′.2′-seco-DNA and natural DNA nor between 1′,2′-seco-DNA and homo-DNA.  相似文献   

9.
The 10‐halo (Cl or Br) anthracene‐9‐nitrile oxides (1a,b) were obtained directly from the treatment of 9‐anthracenylaldoxime with N‐halosuccinimide (NCS or NBS) in DMF. The 3‐(10′‐halo‐9′‐anthracenyl)‐5‐isoxazolecarboxylic esters ( 5a,b and 6a,b ) were prepared via 1 ,3‐dipolar cycloaddition between the obtained nitrile oxides 1a (or 1b ) and two different dipolarophiles: ethyl β‐pyrrolidinocrotonate (an enamine of ethyl acetoacetate) or dimethyl acetylenedicarbox‐ylate (DMAD) respectively. The 10 (or 10′)‐ position of the anthracene in either anthracene‐9‐nitrile oxide or 3‐(9′‐anthracenyl) isoxazole molecules (3,4) is readily halogenated by N‐halosuc‐cinimide in DMF. X‐ray studies showed that 5a possesses two aromatic ring systems that lie at 74.4° from coplanarity. The bond linking the two ring systems is 1.4893(18) Å, indicating only partial conjugation between the two ring systems. The crystal lattice showed unique head‐to‐tail intermolecular stacking of anthracene rings.  相似文献   

10.
Heating of a mixture of N,N′-(thiocarbonyl)diimidazole (= 1,1′-(carbonothioyl)bis[1H-imidazole]; 1 ) and 2,5-dihydro-1,3,4-thiadiazole 2a or 2b gave the 1,3-dithiolanes 4a and 4b , respectively, via a regiospecific 1,3-dipolar cycloaddition of the corresponding ‘thiocarbonyl methanides’ 3a , b onto the C?S group of 1 (Schemes 1 and 2). The adamantane derivative 4b was not stable in the presence of 1H-imidazole and during chromatographic workup. The isolated 1,3-dithiole 5 is the product of a base-catalyzed elimination of 1H-imidazole from the initial cycloadduct 4b . The formation of the S,N-acetal 6 can be rationalized by a protonation of the ‘thiocarbonyl ylide’ 3b followed by a nucleophilic addition of 1H-imidazole. With the diazo compounds 8a–e (Scheme 3) 1 underwent a regiospecific 1,3-dipolar cycloaddition to give the corresponding 2,5-dihydro-1,3,4-thiadiazole derivatives 9 , which spontaneously eliminated 1H-imidazole to yield (1H-imidazol-1-yl)-1,3,4-thiadiazoles 10 . The structures of 10a and 10d were established by X-ray crystallography. In the case of diazodiphenylmethane ( 8f ), the initial cycloadduct 9f decomposed via a ‘twofold extrusion’ of N2 and S to give 1,1′-(2,2-diphenylethenylidene)bis[1H-imidazole] ( 11 ; Scheme 3).  相似文献   

11.
Synthesis of New Heptafulvenes; X-Ray Analysis of ‘8,8-(1′,4′-Dioxotetramethylene)heptafulvene’ (2-(Cyclohepta-2,4,6-trien-1-ylidene)cyclopentane-1,3-dione) Experimental procedures for the synthesis of heptafulvene ( 3a ), 8,8-tetramethylene heptafulvene ( 3c ) and ‘8,8-(1′,4′-dioxotetramethylene) heptafulvene’ (2-(cyclohepta-2,4,6-trien-1-ylidene)-cyclopentane-1,3-dion; 3d ) are described. The most important sequences include a low-temperature reaction of tropylium salts with lithium or Grignard carbenoids (Scheme 1) to give 3a and 3b as well as hydride abstraction from substituted cycloheptatrienes followed by deprotonation to give 3c and 3d . Limitations of these sequences are discussed. Two other heptafulvenes 3h and 3i are available by silylation of heptafulvenolates according to well-known procedures. NMR-Spectroscopic evidence as well as an X-ray analysis of 3d are presented. Compound 3d is a relatively polar heptafulvene with a planarised seven-membered ring as well as a partly delocalized π system.  相似文献   

12.
13.
A series of 2′-benzamido-2′-deoxyadenosine analogues were synthesized in an effort to find new lead structures for the treatment of sleeping sickness. The 2′-deoxy-2′-(3-methoxybenzamido)adenosine ( 1h ) was proved to be a selective inhibitor of the parasite glyceraldehyde 3-phosphate dehydrogenase which confirms the modeling studies. The solution-state conformation of 2′-(thiophene-2-carboxamido) analogue 1d demonstrates a 2′-endo conformation, an orientation of the thiophene ring under the ribose moiety, and the base part occupying a ‘syn’/‘anti’ equilibrium.  相似文献   

14.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

15.
Oxidative Aryl-Aryl-Coupling of 6,6′,7,7′-Tetramethoxy-1,1′,2,2′,3,3′,4,4′-octahydro-1,1′-biisoquinoline Derivatives We describe the synthesis of 2 by intramolecular oxidative coupling of 1, 1′-biisoquinoline derivatives 1 (Scheme 1). This heterocyclic system can be considered as a union of two apomorphine molecules and may thus exhibit dopaminergic activity. - The readily available tetrahydrobiisoquinoline 6 was methylated to 11 (Scheme 4) and reduced (with NaBH3CN) to rac- 7 and (catalytically) to meso- 7 (Scheme 3). Reduction of 11 with NaBH4 and of the biurethane rac- 9 with LiAlH4/AlCl3 afforded meso- and rac- 10 , respectively (Scheme 4). Demethylation of 6 , meso- 10 , meso- and rac- 7 led to 12 , meso- 14 , meso- and rac- 13 , respectively (Scheme 5). The latter two phenols were converted with chloroformic ester to the hexaethoxycarbonyl derivatives meso- and rac- 15 and subsequently saponified to the biurethanes meso- and rac- 16 , respectively (Scheme 5). - In order to assure proximity of the two aromatic rings, the ethano-bridged derivatives meso- and rac- 18 were prepared by condensing meso- and rac- 7 with oxalic ester and reducing the oxalyl derivatives meso- and rac- 17 with LiAlH4/AlCl3, respectively (Scheme 6). The 1H-NMR, spectra at different temperatures showed that rac- 18 populated two conformers but rac- 17 only one, all with C2-symmetry, and that meso- 17 as well as meso- 18 populated two enantiomeric conformers with C1-symmetry. Whereas both oxalyl derivatives 17 were fairly rigid due to the two amide groupings, the ethano derivatives 18 exhibited coalescence temperatures of -20 and 30°. - The intramolecular coupling of the two aromatic rings was successful under ‘non-phenolic oxidative’ conditions with the tetramethoxy derivatives 7, 10 and 18 , the rac-isomers leading to the desired dibenzophenanthrolines, the meso-isomers, however, mostly to dienones (Scheme 9): With VOF3 and FSO3H in CF3COOH/CH2Cl2 rac- 7 was converted to rac- 19 , rac- 18 to rac- 21 and rac- 10 to a mixture of rac- 20 and the dienone 23b of the morphinane type. Under the same conditions meso- 10 was transformed to the dienone 23a of the morphinane type, whereas meso- 18 yielded the dienone 24 of the neospirine type, both in lower yields. The analysis of the spectral data of the six coupling products offers evidence for their structures. With the demethylation of rac- 20 and rac- 21 to rac- 25 and rac- 26 , respectively, the synthetic goal of the work was reached, but only in the rac-series (Scheme 10). - In the course of this work two cleavages of octahydro-1,1′-biisoquinolines at the C(1), C(1′)-bond were observed: (1) The biurethanes 9 and 16 in both the meso- and rac-series reacted with oxygen in CF3COOH solution to give the 3,4-dihydroisoquinolinium salts 27 and 28 ; the latter was deprotonated to the quinomethide 30 (Scheme 11). (2) Under the Clarke-Eschweiler reductive-methylation conditions meso- and rac- 7 were cleaved to the tetrahydroisoquinoline derivative 32 .  相似文献   

16.
Linked chiral bipyridines 2–4 are prepared by combining two optically active ‘pineno’-[4,5]-fused 2,2′-bipyridines in a stereoselective reaction (Scheme 1). These potential ligands are new members of the ‘chiragen’ family, and are characterized by NMR spectroscopy and, in the case of 2 and 3 by single-crystal X-ray analysis. A new synthesis of ‘dipineno’-[4,5;4′,5′]-fused 2,2′ -bipyridine 8 is described, which, when coupled, gives additional four chiral centres to the analogous ‘chiragen’ series ( → 9 ). Analysis of the CD spectra allowed conformational information about the solution species to be determined.  相似文献   

17.
Thioether 4‐[(1′E,3′E)‐4′‐phenylsulfanyl‐1,3′‐butadienyl]pyridine 8 and sulfone 4‐(4′‐phenylsulfonyl‐1′,3′‐butadienyl)pyridine 14 were prepared by reaction of the carbanions derived from allylic thioether or allylic sulfone with isonicotinaldehyde. The reaction with the sulfonyl carbanion occurred at the α position and on heating the alcolate gave the dienic sulfone 14 . The corresponding pyridinium iodide 10 and 15 were prepared by reaction with methyl iodide, respectively, on pyridine derivates 8 and 14 . The dienic pyridinium thioether 10 showed a long wavelength absorption band centered at 420 nm. The reaction of dienic pyridinium sulfone 15 with thiophenol gave the dienic pyridinium thioether 10 by a nucleophilic vinylic substitution. The reaction of sulfone 15 with glutathione was of second order and the rate constant was 8.5 M?1s?1 at 30°C and pH 7, about 500 times smaller than the rate constant observed with (E)‐1‐methyl‐4‐(2‐methylsulfonyl‐1‐ethenyl)pyridinium iodide 1 . The dienic pyridinium thioether 10 was a negative solvatochrome.  相似文献   

18.
1,1′-Dialkylferrocene-3,3′-dicarbaldehydes ( 1a–c ) with long alkyl chains such as ethyl, hexyl, and dodecyl groups were prepared in 13–25% yield via three-step reactions. The titanium-induced dicarbonyl-coupling reaction of 1a–c gave poly(1,1′-dialkyl-3,3′-ferrocenylenevi-nylene)s ( 2a–c ) in quantitative yields, which were the molecular weights of 3000–10,000 and highly soluble in chloroform, benzene, and hexane. The electrical conductivity and the third-order nonlinear optical susceptibility for poly(1,1′-dihexyl-3,3′-ferrocenylenevinylene) ( 2b ) were estimated to be 1 × 10?2 S/cm on doping with iodine and 1–4 × 10?12 esu at a wavelength of 1–2.4 μm, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Search for the Presence in Egg Yolk, in Flowers of Caltha palustris and in Autumn Leaves of 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-Carotene-3,3′-diol) and 3′,O-Didehydrolutein ( =(3R,6′R)-3-Hydroxy-β,ε-carotene-3′-one) 3′.O-Didehydrolutein ( =(3R, 6′R)-3-hydroxy-β,ε-carotene-3′-one; 2) has been detected in egg yolk and in flowers of Caltha palustris. This is the first record for its occurrence in a plant. The compound shows a remarkable lability towards base; therefore, it may have been overlooked til now, because it is destroyed under the usual conditions of saponification of the carotenoid-esters. One of the many products formed from 2 with 1% KOH in methanol has been purified and identified as the diketone 3 ( =(3R)-3-hydroxy-4′, 12′-retro-β,β-carotene-3′,12′-dione). The identification of this transformation product from lutein might throw a new light on the metabolism of this important carotenoid in green plants. 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-carotene-3,3′-diol; 1) was not detected in egg yolk, but is present besides lutein in flowers of C. palustris, thus confirming an earlier report of the occurrence of an isomeric (possibly epimeric) lutein (‘calthaxanthin’) in that plant [21]. We were not able to detect even traces of 1 or 2 in the carotenoid fraction from autumn leaves of Prunus avium (cherry), Parrotia persica, Acer montanum (maple) and yellow needles of Larix europaea (larch). α-Cryptoxanthin (4) , a very rare carotenoid, was isolated in considerable quantity for the first time from flowers of C. palustris.  相似文献   

20.
Acetylation of 2′-deoxy-5-fluoro-2′-trifluoroacetamidouridine with acetic anhydride in pyridine, followed by treatment with phosphorus pentasulfide in refluxing dioxane afforded 3′,5′-di-O-acetyl-2′-deoxy-5-fluoro-2′-trifluorothioacetamido-4-thiouridine ( 3 ). Treatment of 3 with methanolic sodium methoxide furnished 2′-deoxy-2′-trifluorothioacetamido-4-thiouridine ( 4 ), whereas its treatment with methanolic ammonia gave 2′-amino-2′-deoxy-5-fluorocytidine ( 5 ). An alternative approach for the preparation of this compound proceeding from 2′-trifluoroacetamidocytidine was unsuccessful, since the use of acetic anhydride in pyridine led to the replacement of the trifluoroacetyl function by an acetyl group, yielding an intermediate unsuitable for obtaining the target compound. The title compound was inactive at 1 × 10?4 M concentration against HeLa and leukemia L1210 cells in vitro, but inhibited the in vitro growth of E. coli cells at a concentration of 1 × 10?7 M. It was also found to be a substrate for CR/dCR deaminase partially purified from human liver, with a Km of 128 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号