首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diethylhydroxylamine, (C2H5)2NOH, was oxidized by NO2 at 25°C in a long-path-length infrared gas cell. The measured products of the reaction were HONO and CH3CHO. The reaction scheme which explains the reaction is was oxidized by NO2, and the reaction was found to be very rapid with k1 > 10?16 cm3/s. The products of the reaction were verified by both infrared absorption (CH3CHO, C2H5NO) and gas chromatography (CH3CHO, NO).  相似文献   

2.
On the Coordination Chemistry of Phosphines and Phosphine Oxides. XXVIII. Transition Metal Aminoalkylphosphine Complexes. Part II: Palladium and Platinum Complexes Aminoalkylphosphines – C6H5HP? CH2 · CH2? , (C6H5)2P? CH2 · CH2 · CH2? NH2, (C6H5)2P? CH2 · CH2 · CH2? N?CHC6H5 – react with palladium and platinum salts to give coordination compounds of the type MX2, MX2()2, and MX2()4 (M = Pd, Pt; X = Cl, BPh4). The chelating activity of the ligands, structure and properties of the metal complexes are discussed.  相似文献   

3.
Five-membered cyclic esters of phosphoric acid of the general formula: ? CH2CH(R)OP(O)-(OR′)O? polymerize readily to solid, soluble polymers of high molecular weight without any rearrangement known for various tri- and pentavalent organophosphorus monomers. 1H-, 13C-, and 31P-NMR spectra of polymers confirmed their linear structure: where R is H, with R′ = CH3, C2H5, n-C3H7, i-C3H7; n-C4H9, CCl3CH2, or C6H5, or R is CH2Cl and R′ is C2H5. The use of n-C4H9Li, (C5H5)2Mg, or (i-C4H9)3Al as initiators leads to polymers with M n = 104–105.  相似文献   

4.
The photolysis of carbon tetrachloride in the presence of a number of alkanes has been investigated in the gas phase. The products obtained from the photolysis experiments were those expected from a chain reaction in which trichloromethyl radicals abstract hydrogen atoms from the alkane. The data have been used to determine Arrhenius parameters for hydrogen abstraction from the series of alkanes CH4, C2H6, C3H8, and i-C4H10 by trichloromethyl radicals, The rate data obtained are used to explain why termination reactions involving alkyl radicals become less significant as the alkane becomes more complex.  相似文献   

5.
Ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence electron correlation have been employed to examine the [C2H2O] potential energy surface. Four [C2H2O] isomers have been identified as potentially stable, observable ions. These are the experimentally well-known ketene radical cation, [CH2?C?O] (a), and the presently unknown ethynol radical cation, [CH2?C? OH] (b), the oxirene radical cation (c) and an ion resembling a complex of CO with [CH2], (d). The calculated energies of b, c and d relative to a are 189, 257 and 259 kJ mol?1, respectively. Dissociation of ions a and d is found to occur without reverse activation energy.  相似文献   

6.
The preparation of ylides of the general structure is described. Thermolysis of 14a (R = CH3, R' = H, Ar = C6H5) gave dimethylamine and 2,4-dimethyl-6-phenyl-s-triazine. Thermolysis of ylides 14b (R = C6H5; R' = CH3, Ar = C6H5) and 14c (R = C6H5, R' = CH3, Ar = p-tolyl) gave dimethylamine, ArCH = NCH3 and 1-methyl-2-Ar-4,6-diphenyl-1,2-dihydro-s-triazines ( 19a,b ). Triazines 19a and 19b were also prepared by condensation of N-methylbenzamidine with benzaldehyde and p-tolualdehyde, respectively. Thermolysis of 14d (R = C6H5, R1 = CH2C6H5,Ar = C6H5) gave 1-benzyl-2,4,6-triphenyl-1,2-dihydro-s-triazine ( 19c ) and N-benzylidenebenzylamine. Mechanistic aspects of these reactions are discussed.  相似文献   

7.
In earlier work on the room temperature oxidation of C2H2 by O atoms, two distinct sources of methylene radicals have been identified: (i) direct, primary production via channel 1b of the C2H2 + O reaction, and (ii) delayed formation via the secondary reaction 3 involving the products HCCO and H of the other primary channel 1a: Presently, it was confirmed by a detailed sensitivity analysis that the precise shapes of the resulting total methylene concentration-versus-time profiles in C2H2/O systems depend strongly on the k1a/k1b branching ratio. Along that line, the important parameter k1a/k1b was determined from relative CH2 concentration-versus-time profiles measured in a variety of C2H2/O/H systems using Discharge Flow-Molecular Beam sampling Mass Spectrometry techniques (DF-MBMS). The data analysis was carried out by deductive kinetic modelling; the method, as applied to profile shapes, is discussed at length. Via this novel, independent approach, the CH2(3B1) yield of the two-channel C2H2 + O reaction was determined to be k1b/k1 = 0.17 ± 0.08. The indicated 2σ error includes possible systematic errors due to uncertainties in the rate constants of other reactions that influence the shapes of the CH2 profiles. The present result, which translates to an HCCO yield k1a/k1 = 0.83 ± 0.08, is in excellent agreement with other recent determinations. The above mechanism, with the subsequent reactions that it initiates, also reproduces the measured absolute [C2H2], [O], and [H] profiles with an average accuracy of 5%, thus validating the consistency of the C2H2/O/H reaction model put forward here. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The reaction of hydrogen atoms with methyl nitrite was studied in a fast-flow system using photoionization mass spectrometry and excess atomic hydrogen. The associated bimolecular rate coefficient can be expressed by in the temperature range of 223-398°K. NO, CH3OH, CH4, C2H6, CH2O, and H2O are the main products; OH and CH3 radicals were detectable intermediates. The mechanism was deduced from the observed product yields using normal and deuterated reactants. The primary reaction steps were identified as followed by a rapid unimolecular decomposition of CH2ONO into CH2O and NO. Since the extent of reaction channel (1b) could not be determined independently, only extreme limits could be obtained for the individual contributions of the two channels of reaction (3) which follows the generation of CH3O radicals: The most probable values, k3a/k3 = 0.31 ± 0.30 and k3b/k3 = 0.69 ± 0.30, support the previous results on this reaction, although the range of uncertainties is much greater here.  相似文献   

9.
High-temperature (>1000°K) pyrolysis of acetaldehyde (~1% in an atmosphere of pure nitrogen) was examined in a turbulent flow reactor which permits accurate determination of the spatial distribution of the stable species. Results show that the products in order of decreasing importance are CO, CH4, H2, C2H6, and C2H4. Rates of formation were consistent with the Rice–Herzfeld mechanism by including reactions to explain C2H4 formation and the possible presence of ketene. A steady-state treatment of the complete mechanism indicates that the overall reaction order decreases from \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{3}{2} $\end{document} to 1, which is supported by the new experimental data. Using earlier low-temperature results, the rate constant for the reaction CH3CHO → CH3 + CHO (1) was found as k1=1015.85±0.21 exp (?81,775±1000/RT) sec?1. Also, data for the ratio of rate constants for reactions CH3CHO + CH3 → CH4 + CH3CO (4) and 2CH3 → C2H6(6) were fitted to the empirical expression k4/k61/2=10?13.89±0.03T6.1 exp(?1720±70/RT) (cm3/mole·sec)1/2 and causes for the curvature are discussed. The noncatalytic effect of oxygen on acetaldehyde pyrolysis at high temperature is explained.  相似文献   

10.
Conventional transition-state theory is used for extrapolating rate coefficients for reactions of O atoms with alkanes to temperatures above the range of experimental data. Expressions are developed for estimating structural properties of the activated complex necessary for calculating enthalpies and entropies of activation. Particular attention is given to the problem of the effect of the O atom adduct on the internal rotations in the activated complex. Differences between primary, secondary, and tertiary attack are discussed, and the validity of representing the activated complexes of all O + alkane reactions by a fixed set of vibrational frequencies and other internal modes is evaluated. Experimental data for reactions of O atoms with 15 different alkanes (CH4, C2H6, C3H8, C4H10, C5H12, C6H14, C7H16, C8H18, i–C4H10, (CH3)4C, (CH3)2CHCH(CH3)2, (CH3)3CC(CH3)3, c–C5H10, c–C6H12, c–C7H14) are reviewed. The following approximate expressions for ΔS?(298) and E(298), the entropy and energy of activation, respectively, are consistent with the experimental data and with the calculations: where nC = number of carbon atoms in the alkane and nH = the number of “equivalent” H atoms. Using the conventional transition state theory expression, k(298) = 1015.06 exp(ΔS?/R) exp(–E(298)/298R) L mol?1s?1, one then obtains: These expressions agree with experimental values within a factor approximately 2 for alkanes larger than C3H8.  相似文献   

11.
Scrambling data for the three observed [C2H3O]+ isomers, namely [CH3CO]+ (a), [CH2COH]+ (b) and (c), are rationalized by using ab initio molecular orbital calculations. For ions a and c, processes leading to scrambling of the carbon atoms require substantially more energy than the threshold for decomposition to [CH3]+ + CO. Accordingly, little or no carbon scrambling is predicted nor is any observed in the metastable dissociation of a and c. The observed carbon scrambling in b prior to metastable dissociation to [CH3]+ + CO has previously been explained in terms of a mechanism involving the oxiranyl cation (c). However, this mechanism is shown to be unlikely because of the high energies involved. An alternative lower-energy pathway involving the intermediacy of protonated oxirene (h) is proposed. Such a mechanism is fully compatible with the experimental data.  相似文献   

12.
The kinetics of the acetaldehyde pyrolysis have been studied at temperatures from 450° to 525°C, at an acetaldehyde pressure of 176 torr and at 0 to 40 torr of added nitric oxide. The following products were identified and their rates of formation measured: CH4, H2, CO, CO2, C2H4, C2H6, H2O, C3H6, C2H5CHO, CH3COCH3, CH3COOCH?CH2, N2, N2O, HCN, CH3NCO, and C2H5NCO. Acetaldehyde vapor was found to react with nitric oxide slowly in the dark at room temperature, the products being H2O, CH3COOCH3, CO, CO2, N2, NO2, HCN, CH3NO2, and CH3ONO2. The rates of formation of N2 and C2H5NCO depend on how long the CH3CHO-NO mixture is kept at room temperature before pyrolysis; the rates of formation of the other products depend only slightly on the mixing period. The pyrolysis of “clean” CH3CHO–NO mixtures (i.e., the results extrapolated to zero mixing time, which are independent of products formed in the cold reaction) are interpreted as follows: (1) There are two chain carriers, CH3 and CH2CHO, their concentrations being interdependent and influenced by NO in different ways: the CH3 radical is both generated and removed by reactions directly involving NO, whereas CH2CHO is generated only indirectly from CH3 but is also removed by direct reaction with NO. (2) An important mode of initiation by NO is its addition to the carbonyl group with the formation of which is converted into ; this splits off OH with the formation of CH3NCO or CH3 + OCN. (3) Important modes of termination are The steady-state equations derived from the mechanism are shown to give a good fit to the experimental rate versus [NO] curves and, in particular, explain why there is enhancement of rate by NO at higher CH3CHO pressures and, at lower CH3CHO pressures, inhibition at low [NO] followed by enhancement at higher [NO]. The cold reaction is explained in terms of chain-propagating and chain-branching steps resulting from the addition of several NO molecules to CH3CHO and the CH3CO radical. In the “unclean” reaction it is found that the rates of N2 and C2N5NCO formation are increased by CH3NO2, CH3ONO, and CH3ONO2 formed during the cold reaction. A mechanism is proposed, involving the participation of α-nitrosoethyl nitrite, CH3CH(NO)ONO. It is suggested that there are two modes of behavior in pyrolyses in the presence of NO: (1) In the paraffins, ethers, and ketones, the effects are attributed to the addition of NO to a radical with the formation of an oxime-like compound. (2) In the aldehydes and alkenes, where there is a hydrogen atom attached to a double-bonded carbon atom, the behavior is explained in terms of addition of NO to the double bond followed by the formation of an oxime-like species.  相似文献   

13.
The compounds 5,6‐dihydro‐4H‐imidazo[4,5‐c][1,2,5]oxadiazole ( 3a , R?H), 4,6,10,12‐tetramethyl‐5,6,11,12‐tetrahydro‐4H,10H‐bis(1,2,5)oxadiazolo[3,4‐d:3′,4′‐I][1,3,6,8]tetraazecine ( 4b , R?CH3), N3,N3′‐methylenebis‐3,4‐diamino‐1,2,5‐oxadiazole ( 5a , R?H) and N3,N3′‐methylenebis(N,N′‐dimethyl‐3,4‐diamino‐1,2,5‐oxadiazolee) ( 5b , R?CH3) were synthesized from the reaction of formaldehyde with 3,4‐diamino‐1,2,5‐oxadiazole and N,N′‐3,4‐dimethylamino‐1,2,5‐oxadiazole in an acetonitrile.  相似文献   

14.
Experiments for the Preparation of Doubly Silylated Nitroamine Silylated derivatives of nitroamines can be obtained by treating nitryl compounds with silazanes, i. e. via formation of an N? N bond: The reaction product can be isolated in the case of R ? CH3, R′? Si(CH3)3, whereas [(CH3)3Si]2 NNO2 is unstable and cannot be obtained at room temperature. Isomeric Bis(trimethylsilyl)-hyponitrite formed by reaction of silver hyponitrite with trimethylchlorosilane is similarly unstable. Cleavage of siloxanes by nitryl and nitrosyl compounds is discussed in connection with the above reaction.  相似文献   

15.
The synthesis of a novel series of the intermediates N2(N3)‐[1‐alkyl(aryl/heteroaryl)‐3‐oxo‐4,4,4‐trifluoroalk‐1‐en‐1‐yl]‐2‐aminopyridines [F3CC(O)CH?CR1(2? NH?C5H3N)] and 2,3‐diaminopyridines [F3CC(O)CH?CR1(2‐NH2‐3‐NH? C5H3N)], where R1 = H, Me, C6H5, 4‐FC6H4, 4‐CIC6H4, 4‐BrC6H4, 4‐CH3C6H4, 4‐OCH3C6H4, 4,4′‐biphenyl, 1‐naphthyl, 2‐thienyl, 2‐furyl, is reported. The corresponding series of 2‐aryl(heteroaryl)‐4‐trifluoromethyl‐3H‐pyrido[2,3‐b][1,4]diazepin‐4‐ols obtained from intramolecular cyclization reaction of the respective trifluoroacetyl enamines or from the direct cyclocondensation reaction of 4‐methoxy‐1,1,1‐trifluoroalk‐3‐en‐2‐ones with 2,3‐diaminopyridine, under mild conditions, is also reported.  相似文献   

16.
Characterization of [C4H5O]+ ions in the gas phase using their metastable ion and collisional activation spectra shows that the three isomeric ions HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H? OCH3, CH3O? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?C?CH2 and ? OCH3 related to the two stable [C3H3]+ cations [HC?C? CH2]+ and are stable for ≥ 10?5s. In contrast to the formation of cyclopropenium ions, it is found that the methoxy cyclopropenium ion is not generated from acyclic precursor molecules. The small but significant intensity differences found in the collisional activation spectra of [C3H3]+ ions generated from HC?C? CH2I and HC?C? CH2Cl possibly indicate the presence of [C3H3]+ ions of different structures.  相似文献   

17.
Synthesis and NMR Spectra of λ5-Diphosphets. Structure of 2,4-Diphenyl-1,1,3,3-tetrakis (diethylamino)-1λ5, 3λ5-diphosphete Preparation, properties, and n.m.r. spectra of C2H5PF2[N(C2H5)2]2, CH2?PF[N(C2H5)2]2, and the diphosphetes {RC?P[N(C2H5)2]2}2 (R) ? H ( 5a ), CH3 [( 5b )] are described. The λ5-diphosphete {HC?P(NR2)2}2 (R ? CH3) reacts with BF3 · O(C2H5)2 to give which is transformed into by n-C4H9Li. The crystal and molecular structure of 2,4-diphenyl-1,3,3-tetrakis(diethylamino)-1λ5,3λ5-diphosphete 2 are reported and discussed.  相似文献   

18.
A series of sulphide-containing pyridines of general formula ? (CH2)x? S? R where R = CH3, C2H5, CH2CH2OH and x = 1, 2 has been prepared and studied potentiometrically in the presence of Ag+ in 0.5 M (K)NO3 medium at 25°C. The complex formation is discussed in terms of the Taft σ*-parameters for the substituents. In acid region, where the complexes AgLH2+ and AgL2H23+ were formed, coordination occurs through the thioether group. In neutral and alkaline medium their was evidence for the species AgL2H2+, AgL+, AgL2+, Ag2L22+ and Ag2L2+ in which Ag+? S and Ag+? bonds are involved. The five membered chelate rings for the AgL+ and AgL2+ species are found to be more stable than the six-membered ones.  相似文献   

19.
Summary: Fuel cells were designed for high temperature operations. Poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] (PBI) was synthesized in a solution of P2O5, CH3SO3H, and CF3SO3H. The PBI was dissolved in a mixture of CF3CO2H and H3PO4 and the solution was used for the preparation of Pt catalyst slurry for membrane electrode assembly. The single cell showed a current density of 280 mA · cm−2 at a cell voltage of 0.5 V with feeds of H2 and O2 at 160 °C and without external humidification.

  相似文献   


20.
Diphenylphosphorous chloride and methyl iodide add readily to the N-bonded P(III)-atom of (C6H5)2P? P(C6H5)3?N? P(C6H5)2 forming the salts [(C6H5)2P? P(C6H5)2 N P(C6H5)2? P(C6H5)2]Cl and [(C6H5)2P? P(C6H5)2 N P(C6H5)2. CH3]I, respectively. A similar behaviour is observed with sulfur: Under mild conditions (C6H5)2P? P(C6H5)2?N? P(C6H5)2 = S is formed but forcing conditions are required to produce S = P(C6H5)2? P(C6H5)2?N? P(C6H5)2?S. The monosulfide is also obtained by treating (C6H5)2P(S)N[Si(CH3)3]2 with diphenylphosphorous chloride, indicating the favoured formation of the phosphazene system as compared with the phosphazane system Confirmation of the structures comes from 31P nmr and IR data, and for the sulfides also from their degradation with bromine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号