首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Carbon-13 spectra of a series of 26 unsaturated ketones (ortho- and para-cyclo-hexadienones and corresponding open-chain analogues) have been measured by Fourier-transform. Pulse spectroscopy. A complete analysis has been achieved by means of double resonance experiments using noise-modulated and coherent off-resonance proton irradiation and with the aid of non-decoupled spectra. Chemical shifts are interpreted in terms of charge distribution in the dienone system and of methyl substituent effects. Carbon chemical shifts were also obtained for O-protonated ortho- and para-cyclohexadienones. One-bond and long-range carbon-proton and carbon-fluorine spin coupling constants are reported for several compounds.  相似文献   

4.
5.
6.
A β‐diketiminate Al compound ( 1 ) with an exocyclic double bond reacts with two equivalents each of benzophenone and 2‐benzoylpyridine in a [4+2] cycloaddition to generate bicyclic and tricyclic compounds 2 and 3, respectively. Compound 2 consists of six‐ and eight‐membered aluminium rings, whereas 3 has two five‐ and one eight‐membered ring. Compounds 2 and 3 were characterized by a number of analytical tools including single‐crystal X‐ray diffraction. The quantum mechanical calculations suggest that the dissociation of the solvent molecule from 1 would lead to an active species 1A having two 1,4‐dipolar 4π electron moieties, in which the electrophilic site is the Al atom and the nucleophilic positions are polarized exocyclic and endocyclic C?C π bonds. The detailed mechanistic study shows that the dipolarophiles, benzophenone, and 2‐benzoylpyridine undergo double cycloaddition with two 1,4‐dipolar 4π electron moieties of 1A . Herein, the addition of one molecule of the dipolarophile promotes the addition of the second one.  相似文献   

7.
8.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

9.
10.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

11.
12.
13.
14.
15.
16.
17.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

18.
19.
20.
The rate of ZnAl2O4 formation was measured for η-, γ-; and α- Al2O3 in order to distinguish the reactivity of them. The reactivity decreased as follows: η- > γ- > α-Al2O3. The reaction rate fitted to Jander's equation and the activation energies calculated were 33, 47 and 113 Kcal/mol for η-, γ- and α-Al2O3 systems, respectively. These differences are explained by an assumption that η- and γ-Al2O3 resulted in a ZnAl2O4 with imperfect spinel structure, but α-Al2O3 gave the perfect spinel structure. This assumption is based on the theoretical consideration of the activation energy needed for the diffusion-controlled reaction and date of lattice constant of each ZnAl2O4 obtained from three aluminas. The fact that η-Al2O3 shows very high reactivity compared with that of γ-Al2O3 was found to be explained on the basis of Jander's equation, a comparison of specific surface area and the defect structures of the aluminas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号