首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
The reaction of (η5-cyclopentadienyl)(η4-1,3-diphenylcyclobutadiene)cobalt ( I ) with excess Cr(CO)3py3 in BF3OEt2 yielded two identified heterometallic compounds. Compounds II and III with one and two phenyl rings complcxed with Cr(CO)3 fragment(s), respectively. These compounds were characterized by mass, infrared, 1H and 13C NMR spectra and elemental analysis. The crystal structure of II was determined. The Cr(CO)3 fragment bends inward toward the cyclobutadicne ring due to its electron-withdrawing ability, in accord with Hunter's postulate. A sharp line due to the non-complexed phenyl ring was observed in the 1HNMR spectrum, which implies that five protons are magnetically equivalent. The chemical shifts of two protons of the cyclobutadiene ring decreased from I to II then to III , possibly because of diminished deshielding effect from the phenyl ring in (arene)Cr(CO)3.  相似文献   

16.
17.
18.
The title compounds, [Cr(C12H10)(CO)3] and [Cr2(C12H10)(CO)6], serve as a fundamental standard of comparison for other mono‐ and polysubstituted (η6‐bi­phenyl)­tri­carbonyl­chromium compounds. (η6‐Bi­phenyl)­tri­carbonyl­chromium has a typical piano‐stool coordination about the Cr center, and the dihedral angle between the planes of the phenyl rings is 23.55 (5)°. The corresponding angle in μ‐(η66)‐bi­phenyl‐bis­(tri­carbonyl­chromium) is 0° because the mol­ecule occupies a crystallographic inversion center; the Cr atoms reside on opposite sides of the bi­phenyl ligand. Density functional theory and natural bonding orbital theory analyses were used to scrutinize the geometry of these and closely related compounds to explain important structural features.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号