首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments with propane-ethylene mixtures in the temperature range 760–830 K resulted in refinement of the role of ethylene inhibition in the decomposition of propane. The source of the rate-reducing effect of ethylene is the reaction This replaces the decomposition chains more slowly by means of the reactions than H-atoms do by direct H-abstraction from propane. Analysis of the ratios of the product formation rates showed that the selectivity of the ethyl radical for the abstraction of hydrogen of different bond strengths from propane was practically the same as that of the H-atom. The ratio of the rate constants of hydrogen addition to ethylene and methyl-hydrogen abstraction from propane by the H-atom (3) was determined as was that of the decomposition and the similar H-abstraction of the ethyl radical Interpretation of the influence of ethylene required the completion of the mechanism with further initiation of the reaction besides termination via ethyl radicals.  相似文献   

2.
On the basis of the thermal decomposition of mixtures of propylene and propane with molar ratios of 0.0–0.33 in the temperature range 779–812K, the influencing functions describing the inhibition by propylene of the decomposition of propane were determined. The rate-reducing effect is explained mainly by the reactions (in which .R = .H, .CH3 and 2-?3H7) and also by the addition reactions It was established that the bulk of the allyl radicals formed participate in the chain step, but, due to their lower reactivity, they restore the decomposition chain more slowly than the original radicals do. From the characteristic change in the ratio υ/υ, the rate ratios of hydrogenabstraction reaction by radicals from propylene and propane could be determined. In these reactions there was no significant difference between the selectivities of the radicals. For an interpretation of the changes, the decomposition mechanism must be completed with the reaction Evaluation of the influencing curves revealed that the initiation reactions must be taken into account. By parameter estimation we have determined the rate ratios characterizing the above initiation reactions, the unimolecular decomposition of propane, hydrogen abstraction by radicals from propane and propylene, intermolecular isomerization of the 2-propyl radical via propane and propylene, and abstraction of propane hydrogens by the ethyl and methyl radicals; these are given in Tables II.  相似文献   

3.
The thermal decomposition of butene-2-cis at low conversion and its effect on the pyrolysis of propane have been studied in the temperature range 779-812 K. It was established that 2-butene decomposes in a long-chain process, with the chain cycle (Besides the radical path, the molecular reaction can also play a role in the formation of the products.) The thermal decomposition of propane is considerably inhibited by 2-butene, which can be explained by the fact that the less reactive radicals formed in the reactions between the olefin and the chain-carrying radicals regenerate the chain cycle more slowly than the original radicals in the above chain cycle or in the reactions The reactions of the 2-propyl radical are further initiation steps. The ratios of the rate coefficients of the elementary steps of the decomposition (Table III) have been determined via the ratios of the products. Estimation of the radical concentrations indicated that only the methyl, 2-propyl and methylallyl radicals are of importance in the chain termination. On the basis of the inhibition-influenced curves, the role of the bimolecular initiation steps. could be clarified in the presence of 2-butene.  相似文献   

4.
The kinetics of the gas-phase decomposition of bicyclo[4.1.0]heptane has been studied over the temperature range of 708–769 K at pressures between 1 and 17 torr. Isomerization to 1-methylcyclohex-1-ene, methylenecyclohexane, and cycloheptene accounts for 96–98% of the primary reaction products and occurs by first-order, homogeneous, nonradical processes.   相似文献   

5.
Chloroethanes react with aqueous caustic to yield either elimination or substitution products. The reaction rates were measured for the dichloroethanes, trichloroethanes, tetrachloroethanes, and pentachloroethane between 283 and 353°K. The constants of HCl eleminations referring to the rate equation are given by all rate constants being in 1./mole·s and R in cal/mole· deg. With ethyl chloride, 1,1-dichloroethane, and 1,1,l-trichloroethane, the elimination is not observed and a slow substitution takes place. The influence of chlorine substituents on both sides of the molecule on mechanism and rate parameters is discussed.  相似文献   

6.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

7.
Mixtures of up to 14% azomethane in propane have been photolyzed using mainly 366 nm radiation in the ranges of 323–453 K and 25–200 torr. Detailed measurements were made of the yields of nitrogen, methane, and ethane. Other products observed were isobutane, n-butane, ethene, and propene. A detailed mechanism is proposed and shown to account for the observed variation of product yields with experimental conditions. The quantum yield of the molecular process is found to be given by the temperature-independent equation The values of rate constants obtained are where the reactions are and it is assumed that the rate constant for the reaction is given by   相似文献   

8.
The pyrolysis of isobutane was investigated in the ranges of 770° to 855°K and 20 to 150 Torr at up to 4% decomposition. The reaction is homogeneous and strongly self-inhibited. A simple Rice-Herzfeld chain terminated by the recombination of methyl radicals is proposed for the initial, uninhibited reaction. Self-inhibition is due to abstraction of hydrogen atoms from product isobutene giving resonance-stabilized 2-methylallyl radicals which participate in termination reactions. The reaction chains are shown to be long. It is suggested that a previously published rate constant for the initiation reaction (1) is incorrect and the value k1 = 1016.8 exp (?81700 cal mol?1/RT)s?1 is recommended. The values of the rate constants for the reactions (4i) (4t) (8) are estimated to be and From a recalculation of previously published data on the pyrolysis of isobutane at lower temperatures and higher pressures, the value k11c, = 109.6 cm3 mol?1 s?1 is obtained for the rate constant of recombination of t-butyl. A calculation which is independent of any assumed rate constants or thermochemistry shows that the predominant chain termination reaction is the recombination of two methyl radicals in the conditions of the present work and the recombination of two t-butyl radicals in those of our previous study at lower temperatures and higher pressures.  相似文献   

9.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

10.
A method is described for the measurement of relative rate constants for abstraction of hydrogen from ethylene at temperatures in the region of 750 K. The method is based on the effect of the addition of small quantities of propane and isobutane on the rates of formation of products in the thermal chain reactions of ethylene. On the assumption that methane and ethane are formed by the following reactions, (1) measurements of the ratio of the rates of formation of methane and ethane in the presence and absence of the additive gave the following results: Values for k2 and k3 obtained from these ratios are compared with previous measurements.  相似文献   

11.
The pyrolyses of endo- and exo-5-methylbicyclo (2.2.2) oct-2-ene (endo- and exo-MBO) have been studied between 608 and 679°K at pressures between 7 and 37 torr. These reactions correspond to parallel first-order eliminations of propene and ethylene: The rate constants (in sec?1) for endo-MBO are given by and those for exo-MBO by Reaction mechanisms involving diradicals are shown to be compatible with the experimental results. The heats of formation and the entropies of endo and exo-MBO are estimated.  相似文献   

12.
2,4-Dimethylhexene-l has been decomposed in single-pulse shock tube experiments. Rate expressions for the initial reactions are and sec?1 at 1.5–5 atm and 1050°K. This leads to ΔH°f300 (CH2 = C(CH3)CH2) = 124 kJ/mol, or an allylic resonance energy of 50 kJ/mol. Rate expressions for the decomposition of the appropriate olefins which yield isobutenyl radicals and methyl, ethyl, isopropyl, n-propyl, t-butyl, and t-amyl radicals, respectively, are presented. The rate expression for the decomposition of isobutenyl radical is (at the beginning of the fall-off region). For the combination of isobutenyl and methyl radicals, the rate constant at 1020°K is Combination of this number and the calculated rate expression for 2-methylbutene-1 decomposition gives S. (1100) = 470 J/mol °K. This yields It is demonstrated that an upper limit for the rate of hydrogen abstraction by isobutenyl from toluene is   相似文献   

13.
The thermal decomposition of ammonia was studied by means of the shock-tube and vacuum ultraviolet absorption spectroscopy monitoring the concentration of atomic hydrogen. The rate constants of both the initiation reaction and the consecutive reaction were determined directly as and respectively.  相似文献   

14.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

15.
The Diels–Alder addition of acrolein to cyclohexa-1,3-diene has been studied between 486 and 571°K at pressures ranging from 55 to 240 torr. The products are endo- and exo-5-formylbicyclo[2.2.2]oct-2-ene (endo- and exo-FBO), and their formations are second order. The rate constants (in l./mole · sec) are given by The retro-Diels–Alder pyrolysis of endo-FBO has also been studied. In the ranges of 565–638°K and 6–38 torr, the reaction is first order, and its rate constant (in sec?1) is given by The reaction mechanism is discussed. The heat of formation and the entropy of endo-FBO are estimated.  相似文献   

16.
The reaction H + CH3OOH was investigated under conditions of excess atomic hydrogen concentration using a flow reactor attached to a photoionization mass spectrometer. The rate coefficient of the reaction was determined as The three important reaction channels were found to be with the individual contributions determined as indicated. The product methoxy and methylperoxy radicals react mainly with atomic hydrogen under the employed experimental conditions according to where the estimates for the percentage contributions of the various channels were derived from the measured product yields.  相似文献   

17.
The thermal decomposition of 1,1,1-trifluoro-2-chloroethane has been investigated in the single-pulse shock tube between 1120° and 1300deg;K at total reflected shock pressures from ~2610 to 3350 torr. Under these conditions, the major reaction is the α,α-elimination of hydrogen chloride, with The decomposition also involves the slower α,β-elimination of hydrogen fluoride, with the first-order rate constant given by At temperatures above 1270°K, two additional minor products were observed. These were identified as CF2CFCl and CF3CHCl2 and suggest C? Cl rupture as a third reaction channel leading to complicated kinetics.  相似文献   

18.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

19.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

20.
The rates of several novel elementary reactions involving ClO, BrO and SO free radicals in their ground states were studied in a discharge-flow system at 295 K, using mass spectrometry. The rate constant k2 was determined from the decay of SO radicals in the presence of excess ClO radicals: The SO + OClO overall reaction has a complex mechanism, with the primary step having a rate constant k5 equal to (1.9 ± 0.7) × 10?12 cm3 sec?1: A lower limit for the rate constant of the rapid reaction of SO radicals with BrO radicals was determined:   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号