首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Syntheses of Sulfonated Derivatives of 4-Amino-1, 3-dimethylbenzene and 2-Amino-1, 3-dimethylbenzene Direct sulfonation of 4-amino-1, 3-dimethylbenzene (1) and sulfonation of 4-nitro-1,3-dimethylbenzene ( 4 ) to 4-nitro-1,3-dimethylbenzene-6-sulfonic acid ( 3 ) followed by reduction yield 4-amino-1,3-dimethylbenzene-6-sulfonic acid ( 2 ). The isomeric 5-sulfonic acid ( 5 ) however is prepared solely by baking the acid sulfate salt of 1 . Reaction of sulfur dioxide with the diazonium chloride derived from 2-amino-4-nitro-1,3-dimethylbenzene ( 7 ) leads to 4-nitro-1,3-dimethylbenzene-2-sulfonyl chloride ( 8 ), which is successively hydrolyzed to 4-nitro-1,3-dimethylbenzene-2-sulfonic acid ( 9 ) and reduced to 4-amino-1, 3-dimethylbenzene-2-sulfonic acid ( 6 ). Treatment of 4-amino-6-bromo-1,3-dimethylbenzene ( 12 ) and 4-amino-6-chloro-1, 3-dimethylbenzene ( 13 ), the former obtained by reduction of 4-chloro-6-nitro-1,3-dimethyl-benzene ( 10 ) and the latter from 4-chloro-6-nitro-1, 3-dimethylbenzene ( 11 ), with oleum yield 4-amino-6-bromo-1,3-dimethylbenzene-2-sulfonic acid ( 14 ) and 4-amino-6-chloro-1,3-dimethylbenzene-2-sulfonic acid ( 15 ) respectively; subsequent carbon-halogen hydrogenolyses of 14 and 15 lead also to 6 (Scheme 1). Baking the acid sulfate salt of 2-amino-1, 3-dimethylbenzene ( 17 ) gives 2-amino-1, 3-dimethylbenzene-5-sulfonic acid ( 16 ), whereas the isomeric 4-sulfonic acid ( 18 ) can be prepared by either of the following three possible pathways: Sulfonation of 2-nitro-1,3-dimethylbenzene ( 20 ) to 2-nitro-1,3-dimethylbenzene-4-sulfonic acid ( 21 ) followed by reduction or sulfonation of 2-acetylamino-1,3-dimethylbenzene ( 19 ) to 2-acetylamino-1,3-dimethylbenzene-4-sulfonic acid ( 22 ) with subsequent hydrolysis or direct sulfonation of 17 . Further sulfonation of 18 yields 2-amino 1,3-dimethylbenzene-4,6-disulfonic acid ( 23 ), the structure of which is independently confirmed by reduction of unequivocally prepared 2-nitro- 1,:3-dimethylbenzene-4,6-disulfonic acid ( 24 )(Scheme 2).  相似文献   

3.
Enantioselective Saponification of Diacetates of 2-Nitro-1,3-propanediols by Pig-Liver Esterase and Preparation of Enantiomerically Pure Derivatives of 2-Nitro-allylic Alcohols (Chiral Multiple-Coupling Reagents) The reproducible enantioselective saponification of open-chain and cyclic diacetates of meso-2-nitro-1,3-propanediols (see 4b – 13b ) with pig-liver esterase (PLE) gives monoacetates (see 4c – l3c ) of > 95% enantiomeric excess. The Re enantiotopic acetate group appears to be saponified preferentially, as proved by the X-ray crystal structure analysis of three camphanoates 4d , 6d , and 7d . Elimination of H2O or AcOH from the hydroxy acetates thus available gives derivatives of nitro-allylic alcohols (see 20 – 24 , 27 , and 29 ) which are subjected to diastereoselective Michael additions or SN2′ substitutions.  相似文献   

4.
Cyclic Oligomers of (R)-3-Hydroxybutanoic Acid: Preparation and Structural Aspects The oligolides containing three to ten (R)-3-hydroxybutanoate (3-HB) units (12-through 40-membered rings 1–8 ) are prepared from the hydroxy acid itself, its methyl ester, its lactone (‘monolide’), or its polymer (poly(3-HB), mol. wt. ca. 106 Dalton) under three sets of conditions: (i) treatment of 3-HB ( 10 ) with 2,6-dichlorobenzoyl chloride/pyridine and macrolactonization under high dilution in toluene with 4-(dimethylamino)pyridine (Fig. 3); (ii) heating a solution (benzene, xylene) of the β-lactone 12 or of the methyl ester 13 from 3-HB with the tetraoxadistanna compound 11 as trans-esterification catalyst (Fig. 4); (iii) heating a mixture of poly(3-HB) and toluene-sulfonic acid in toluene/1,2-dichloroethane for prolonged periods of time at ca. 100° (Fig. 6). In all three cases, mixtures of oligolides are formed with the triolide 1 being the prevailing component (up to 50% yield) at higher temperatures and with longer reaction times (thermodynamic control, Figs. 3–6). Starting from rac-β-lactone rac- 12 , a separable 3:1 to 3:2 mixture of the l,u- and the l,l-triolide diasteroisomers rac- 14 and rac- 1 , respectively, is obtained. An alternative method for the synthesis of the octolide 6 is also described: starting from the appropriate esters 15 and 17 and the benzyl ether 16 of 3-HB, linear dimer, tetramer, and octamer derivatives 18–23 are prepared, and the octamer 23 with free OH and CO2H group is cyclized (→ 6 ) under typical macrolactonization conditions (see Scheme). This ‘exponential fragment coupling protocol’ can be used to make higher linear oligomers as well. The oligolides 1–8 are isolated in pure form by vacuum distillation, chromatography, and crystallization, an important analytical tool for determining the composition of mixtures being 13C-NMR spectroscopy (each oligolide has a unique and characteristic chemical shift of the carbonyl C-atom, with the triolide 1 at lowest, the decolide 8 at highest field). The previously published X-ray crystal structures of triolide 1 , pentolide 3 , and hexolide 4 (two forms), as well as those of the l,u-triolide rac- 14 , of tetrolide ent- 2 , of heptolide 5 , and of two modifications of octolide 6 described herein for the first time are compared with each other (Figs. 7–10 and 12–15, Tables 2 and 5–7) and with recently modelled structures (Tables 3 and 4, Fig. 11). The preferred dihedral angles τ1 to τ4 found along the backbone of the nine oligolide structures (the hexamer and the larger ones all have folded rings!) are mapped and statistically evaluated (Fig. 16, Tables 5–7). Due to the occurrence of two conformational minima of the dihedral angle O? CO? CH2? CH (τ3 = + 151 or ?43°), it is possible to locate two types of building blocks for helices in the structures at hand: a right-handed 31 and a left-handed 21 helix; both have a ca. 6 Å pitch, but very different shapes and dispositions of the carbonyl groups (Fig. 17). The 21 helix thus constructed from the oligolide single-crystal data is essentially superimposable with the helix derived for the crystalline domains of poly(3-HB) from stretched-fiber X-ray diffraction studies. The absence of the unfavorable (E)-type arrangements around the OC? OR bond (‘cis-ester’) from all the structures of (3-HB) oligomers known so far suggests that the model proposed for a poly(3-HB)-containing ion channel (Fig. 2) must be modified.  相似文献   

5.
Enantiomerically Pure Synthetic Building Blocks with Four C-Atoms and Two or Three Functional Groups from β-Hydroxy-butanoic, Malic, and Tartaric Acid The pool of chiral, non-racemic electrophilic building blocks, which are available from simple natural products in both enantiomeric forms is enlarged by the epoxides 3, 5 , and 10 , by the tosylate 12a , and by the aldehydes 18 (cf. symbols A-D , 14 , and Scheme 1). Key steps of the conversions leading from hydroxyacids to the building blocks are: epoxide-opening by triethylborohydride ( 1 → 2a ) and tosylate reduction ( 12a → 12b ); the Mitsunobu inversion ( 2a → 4a ); the reduction of (R, R)-tartaric ester to (R)-malic ester by NBS (N-bromosuccinimide) opening of the benzaldehyde acetal 8 and tin hydride reduction ( 6c → 7c ); the enantiomer enrichment of optically active ethyl β-hydroxy-butanoate through the crystalline dinitrobenzoate 21b . Detailed procedures are given for large scale preparations of the key intermediates. The enantiomeric purities of the building blocks are secured by correlations.  相似文献   

6.
7.
8.
9.
10.
Preparation of ‘Semialdehyde’ Derivatives of Aspartic and Glutamic Acid via the Rosenmund Reduction Suitably protected aspartic-acid ‘β-semialdehyde’ and glutamic-acid ‘γ-aldehyde’ derivatives can be obtained, in good yield by Rosenmund reduction of the corresponding acid chlorides. Benzyloxycarbonyl (Z) and (tert-butoxy)carbonyl (Boc) protecting groups are not affected under these reaction conditions. The sensitive aldehydes, which are obtained in higher purity than by hydride reductions, can directly be used for further transformations like aldol-type reactions.  相似文献   

11.
Synthesis of Enantiomerically Pure, α-Alkylated Lysine, Ornithine, and Tryptophan Derivatives The imidazolidinones 9 and 10 as well as the oxazolidinone 18a were prepared in several steps by known methods from lysine and ornithine with an overall yield of ca. 20%. After double deprotonation with LDA, the corresponding dianionic derivatives could be diastereoselectively alkylated with electrophiles (MeI, C6H5CH2Br, C6H5CHO, CH3CHO). Acid hydrolysis led to the two enantiomeric 2-methyl- and 2-benzyllysines and to the enzyme inhibitor (S)-2-methylornithine. Several α-alkylated tryptophan derivatives were obtained through alkylation of the heterocycles derived from various amino acids with 1-(tert-butyloxycarbonyl)-3-(bromomethyl)indole ( 26 ). Alkaline hydrolysis of the five-membered auxiliary ring of 30b followed by treatment with HCl afforded (S)-2-methyltryptophan ( 31 ).  相似文献   

12.
Preparation and Properties of Aluminium Hydroxide. II. Boehmite from Sodium Aluminate and Nitric Acid A report is given on the physical-chemical characteristics of aluminium hydroxide which contain mainly boehmite, having been obtained by continuous precipitation from sodium aluminate solution with nitric acid using technical raw materials and conditions being very similar to those applied in production. The influence of the reaction conditions (pH value, temperature, concentration and residence time in the precipitation suspension) on the chemical composition, structure and texture of the hydrogels is studied. With rising precipitation temperature the pH range extends, within which already after short residence times pure-phase, relatively well crystalline boehmite hydrogels are obtained in the precipitated solution.  相似文献   

13.
14.
15.
Asymmetric Michael-Additions. Stereoselective Alkylation of Chiral, Non-racemic Enolates by Nitroolefins. Preparation of Enantiomerically Pure γ-Aminobutyric and Succinic Acid Derivatives Chiral, non-racemic lithium enolates ( E , F , G ) of 1,3-dioxolan-4-ones, methyl 1,3-oxazolidin-4-carboxylates, methyl 1,3-oxazolin-4-carboxylates, 1,3-oxazolidin-5-ones, and 1,3-imidazolidin-4-ones derived from (S)-lactic acid ( 2a ), (S)-mandelic acid ( 2b ), and (S)-malic acid ( 2c ), or from (S)-alanine ( 10 ), (S)-proline ( 11 ), (S)-serine ( 12 ), and (S)-threonine ( 13 ), are added to nitroolefins. Michael adducts ( 3 – 9 , 14 – 18 ) are formed (40–80%) with selectivities generally above 90% ds of one of the four possible stereoisomers. Conversions of these nitroalkylated products furnish the α-branched α-hydroxysuccinic acids 28 and 29 , the α-hydroxy-γ-amino acid 25 , the α,γ-di-amino acid 32 , the substituted γ-lactames 19 – 22 , and the pyrrolidine 23 . The relative and absolute configuration of the products from dioxolanones and nitropropene are derived by chemical correlation and NOE measurements indicating that the steric course of reaction is to be specified as 1k, ul-1,3. The mechanism is discussed.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号