首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new analytical procedure was developed using headspace solid-phase microextraction (HS-SPME) for the simultaneous determination of sorbic and benzoic acids in beverages. The sample were processed depending on their nature, either only diluted with water, or treated with a NaOH solution and filtered through a 0.45-μm membrane filter. The samples were heated in a vial in the presence of sulfuric acid and anhydrous sodium sulfate and the analytes were collected from the headspace by using a 65-μm polydimethylsiloxane-divinylbenzene (PDMS-DVB) coated fiber and determined by gas chromatography with flame ionization detector (GC-FID). To enhance the sensitivity of HS-SPME, the temperature and time of the extraction and desorption, the acidity and salt concentration of the extraction solution were optimized. Linear range of the analytes was found to be between 0.1 and 20 mg/L with regression coefficients (R2) of 0.9998 for sorbic acid and 0.9980 for benzoic acid. Limits of detection (LOD) were 5.83 μg/L and 11.4 μg/L for sorbic and benzoic acids, respectively. Relative standard deviation (R.S.D.) for six replicate analyses within 3 days (two times/day) was found to be lower than 8.62% at three concentration levels (2, 6, 10 mg/L). Recoveries ranged from 81.20% to 108.1% for real samples. The results demonstrate the suitability of the HS-SPME technique to analyze sorbic and benzoic acids in a variety of beverages.  相似文献   

2.
A new on-line preconcentration technique was developed that makes possible to determine nanomolar concentrations of weak acidic analytes in CE. The method consists of long-running electrokinetic sample injection and stacking (electrokinetic immobilization) of the analytes at a boundary of two electrolytes with different pH values (pH 9.5 and 2.5) and consequent mobilization of the stacked uncharged analytes in a micellar system (containing SDS micelles). Several factors including buffer concentration, pH, applied voltage, time of preconcentration, and SDS concentration were tested to optimize the analysis method. An about 4600-fold increase of the sample concentration (in comparison with the standard CZE) can be achieved during the preconcentration step. Two preservatives applied in food industry -- benzoic acid and sorbic acid were used as model samples. The applicability of the proposed method in food analysis was demonstrated by determination of nanomolar concentrations of benzoic acid in sunflower oil. An extended version of the computer program Simul was used for modeling both the preconcentration and mobilization processes taking place in the capillary.  相似文献   

3.
A facile headspace solid-phase microextraction (HS-SPME) procedure using 85 microm polyacrylate (PA) fiber is presented for the simultaneous determination of preservatives (sorbic and benzoic acids) in food dressing, including Thousand Island Dressing, HellMANN'S Salad Dressing and Tomato Ketchup, by gas chromatography (GC) with flame ionization detector (FID). The method presented preserves the advantages typical of HS-SPME such as simplicity, low intensity of labor, low cost and solvent free. The main factors affecting the HS-SPME process, such as extraction temperature and time, desorption temperature and time, the acidity and salt concentration of the solution, were optimized. Limits of detection (LODs) of the method were 2.00 microg/L for sorbic acid and 1.22 microg/L for benzoic acid. Relative standard deviations (RSDs) for quintuplicate analyses at three concentration levels of 0.10, 2.0 and 20 mg/L ranged between 3.86 and 14.8%. The method also showed good linearity n a range from 0.02 to 40 mg/L with correlation coefficients (R2) of 0.9986 for sorbic acid and 0.9994 for benzoic acid. Recoveries for the two analytes in all the samples tested ranged from 83.44 to 113.2%. Practical applicability was demonstrated through the simultaneous determination of sorbic and benzoic acids in the three complex samples.  相似文献   

4.
An analytical technique of in-line coupling headspace liquid-phase microextraction (HS-LPME) with capillary electrophoresis (CE) was proposed to determine volatile analytes. A special cover unit of the sample vial was adopted in the coupling method. To evaluate the proposed method, phenols were used as model analytes. The parameters affecting the extraction efficiency were investigated, including the configuration of acceptor phase, kind and concentration of acceptor solution, extraction temperature and time, salt-out effect, sample volume, etc. The optimal enrichment factors of HS-LPME were obtained with the sample volume of about half of sample vials, which were confirmed by both the theoretical prediction and experimental results. The enrichment factors were obtained from 520 to 1270. The limits of detection (LODs, S/N = 3) were in the range from 0.5 to 1 ng/mL each phenol. The recoveries were from 87.2% to 92.7% and the relative standard deviations (RSDs) were lower than 5.7% (n = 6). The proposed method was successfully applied to the quantitative analysis of the phenols in tap water, and proved to be a simple, convenient and reliable sample preconcentration and determination method for volatile analytes in water samples.  相似文献   

5.
Wei F  Zhang M  Feng YQ 《Electrophoresis》2006,27(10):1939-1948
A novel poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction method coupled with CZE was proposed for rapidly determining a mixture of opiates comprising heroin, 6-monoacetylmorphine, morphine, codeine, papaverine, and narcotine in human urine. The extraction device contained a regular plastic syringe, the poly(MAA-EGDMA) monolithic capillary tube (530 microm id x 3 cm) and a plastic pinhead, which connected the monolithic capillary tube and the syringe without leakage. In the polymer monolith microextraction, the sample solution was ejected via the monolithic capillary tube by a programmable syringe pump, followed by desorption with an aliquot of appropriate solution, which was collected into a vial for the subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v with temperature and voltage of 25 degrees C and 25 kV, respectively. By applying electrokinetic injection with field-enhanced sample stacking, detection limits of 6.6-19.5 ng/mL were achieved. Excellent method of reproducibility was found over a linear range of 80-2000 ng/mL.  相似文献   

6.
毛细管区带电泳法同时测定饮料中16种食品添加剂   总被引:1,自引:0,他引:1  
龙巍然  岑怡红  王兴益  白玉  刘虎威 《色谱》2012,30(7):747-751
建立了毛细管区带电泳法测定饮料中酸性红92、专利蓝V、荧光素二钠、酸性红1、靛蓝胭脂红、亮黑、丽春红6R、日落黄、苋菜红、柠檬黄等10种人工合成色素和苯甲酸、山梨酸、对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯等6种防腐剂的分析方法。考察了缓冲溶液种类、浓度、pH值及运行电压、温度等对分离的影响,确定最佳电泳条件为: 未涂层弹性石英毛细管柱(46 cm×50 μm),缓冲溶液为70 mmol/L硼酸(pH=9.5)(含体积分数为4%的乙腈),检测波长220 nm,电泳电压30 kV,进样时间5 s,电泳温度25 ℃。该法用于测定市售饮料样品得到满意结果: 在1~250 mg/L范围内线性关系良好,相关系数不小于0.9938,回收率在95.8%与108.7%之间。该法简便、准确,能够满足食品添加剂的常规检测要求。  相似文献   

7.
Several fully automated liquid-phase microextraction (LPME) techniques, including static headspace LPME (HS-LPME) (a drop of solvent is suspended at the tip of a microsyringe needle and exposed to the headspace of the sample solution), exposed dynamic HS-LPME (the solvent is exposed in the headspace of sample vial for different time, and then withdrawn into the barrel of the syringe. This procedure is repeated a number of times), unexposed dynamic HS-LPME (the solvent is moved inside the needle and the barrel of a syringe, and the gaseous sample is withdrawn into the barrel and then ejected), static direct-immersed LPME (DI-LPME) (a drop of solvent is suspended at the tip of a microsyringe needle and directly immersed into the sample solution), dynamic DI-LPME (the solvent is moved inside the needle and the barrel of a syringe, and the sample solution is withdrawn and ejected), and two phase hollow fiber-protected LPME (HF-LPME) (a hollow fiber is used to stabilize and protect the solvent), auto-performed with a commercial CTC CombiPal autosampler, are described in this paper. Critical experimental factors, including temperature, choice of extraction solvent, solvent volume, plunger movement rate, and extraction time were investigated. Among the three HS-LPME techniques that were evaluated, the exposed dynamic HS-LPME technique provided the best performance, compared to the unexposed dynamic HS-LPME and static HS-LPME approaches. For DI-LPME, the dynamic process can enhance the extraction efficiency and the achieved method precision is comparable with the static DI-LPME technique. The precision of the fully automated HF-LPME is quite acceptable (RSD values below 6.8%), and the concentration enrichment factors are better than the DI-LPME approaches. The fully automated LPME techniques are more accurate and more convenient, and the reproducibility achieved eliminates the need for an internal standard to improve the method precision.  相似文献   

8.
A micellar electrokinetic capillary method for the simultaneous determination of the sweeteners dulcin, aspartame, saccharin, and acesulfame-K and the preservatives sorbic acid; benzoic acid; sodium dehydroacetate; and methyl-, ethyl-, propyl-, isopropyl-, butyl-, and isobutyl-p-hydroxybenzoate in preserved fruits is developed. These additives are ion-paired and extracted using sonication followed by solid-phase extraction from the sample. Separation is achieved using a 57-cm fused-silica capillary with a buffer comprised of 0.05 M sodium deoxycholate, 0.02 M borate-phosphate buffer (pH 8.6), and 5% acetonitrile, and the wavelength for detection is 214 nm. The average recovery rate for all sweeteners and preservatives is approximately 90% with good reproducibility, and the detection limits range from 10 to 25 microg/g. Fifty preserved fruit samples are analyzed for the content of sweeteners and preservatives. The sweeteners found in 28 samples was aspartame (0.17-11.59 g/kg) or saccharin (0.09-5.64 g/kg). Benzoic acid (0.02-1.72 g/kg) and sorbic acid (0.27-1.15 g/kg) were found as preservatives in 29 samples.  相似文献   

9.
A novel temperature-controlled headspace liquid-phase microextraction (TC-HS-LPME) device was established in which volatile solvents could be used as extractant. In this device, a PTFE vial cap with a cylindrical cavity was used as the holder of the extraction solvent. Up to 40 μl of extraction solvent could be suspended in the cavity over the headspace of aqueous sample in the vial. A cooling system based on thermoelectric cooler (TEC) was used to lower the temperature of extractant in PTFE vial cap to reduce the loss of volatile solvent during extraction process and increase the extraction efficiency. The selection of solvents for HS-LPME was then extended to volatile solvents, such as dichloromethane, ethyl acetate and acetone. The use of volatile extraction solvents instead of semi-volatile solvent reduced the interference of the large solvent peak to the analytes peaks, and enhanced the compatibility of HS-LPME with gas chromatograph (GC). Moreover, the use of larger volume of extractant solvent increases the extraction capacity and the injection volume of GC after extraction, thus improving detection limits. Several critical parameters of this technique were investigated by using chlorobenzenes (CBs) as the model analytes. High enrichment factors (498–915), low limits of detection (0.004–0.008 μg/L) and precision (3.93–5.27%) were obtained by using TC-HS-LPME/GC-FID. Relative recoveries for real samples were more than 83%.  相似文献   

10.
A new method for the simultaneous quantitation of 11 preservatives-imidazolidinyl urea, benzyl alcohol, dehydroacetic acid, sorbic acid, phenoxyethanol, benzoic acid, salicylic acid, and four parabens (methyl, ethyl, propyl, and butyl)-in cosmetics by micellar electrokinetic capillary chromatography was established and validated. The separation was performed using an uncoated fused-silica capillary (50 pm id x 60.2 cm, effective length 50 cm) with a running buffer consisting of 15 mmol/L sodium tetraborate, 60 mmol/L boric acid, and 100 mmol/L sodium dodecyl sulfate. A 1:10 dilution of the running buffer was used as the sample buffer to extract the cosmetic samples. The key factors, such as the concentration and pH of the running and sample buffers, which influence quantitative analysis of the above 11 preservatives in cosmetic samples, were investigated in detail. The linear ranges of the calibration curves for imidazolidinyl urea and the other 10 preservatives were 50-1000 and 10-200 mg/L, respectively. The correlation coefficients of the standard curves were all higher than 0.999. The recoveries at the concentrations studied ranged from 93.0 to 102.7%. RSDs were all less than 5%. The new method with simple sample pretreatment met the needs for routine analysis of the 11 preservatives in cosmetics.  相似文献   

11.
A simple, rapid and sensitive on-line method for the simultaneous determination of benzoic and sorbic acids in food was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with UV detection. The diethylamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary selected as the extraction medium exhibited a high extraction capability towards benzoic and sorbic acids. To obtain optimum extraction performance, several in-tube SPME parameters were investigated, including pH value, inorganic salt, and the organic solvent content of the sample matrix. After simple dilution with 0.02 mol/L phosphate solution (pH 4.0), carbonated drink, juice drink, sauce and jam samples could be directly injected for extraction. For succade samples, a small amount of acetonitrile was required to extract analytes prior to dilution and subsequent extraction. The linearity of the method was investigated over a concentration range of 5–20000 ng/mL for both analytes, and the correlation coefficients (R 2 values) were higher than 0.999. The detection limits for benzoic and sorbic acids were 1.2 and 0.9 ng/mL, respectively. The method reproducibility was tested by evaluating the intra- and interday precisions; relative standard deviations of less than 4.4 and 9.9%, respectively, were obtained. Recoveries of compounds from spiked food samples ranged from 84.4 to 106%. The developed method was shown to be suitable for the routine monitoring of benzoic and sorbic acids in various types of food samples.  相似文献   

12.
Wei F  Fan Y  Zhang M  Feng YQ 《Electrophoresis》2005,26(16):3141-3150
A method based on in-tube solid-phase microextraction and capillary zone electrophoresis (CZE) was proposed for simultaneously determining four amphetamines (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine) in urine. A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column, which can provide sufficient extraction efficiency, was introduced for the extraction of amphetamines from urine samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the samples were analyzed by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v, with a temperature and voltage of 25 degrees C and 20 kV, respectively. By applying electrokinetic injection with field-amplified sample stacking, detection limits of 25-34 microg/L were achieved. Excellent method of reproducibility was found over a linear range of 0.1-5 mg/L. Determination of these analytes from abusers' urine sample was also demonstrated.  相似文献   

13.
陈军 《色谱》2002,20(1):87-89
 采用顶空固相微萃取技术和气相 质谱联用技术对纺织品中的挥发性防虫蛀剂的残留进行了测定。该方法对挥发性二氯苯和萘的检测限量为 1μg/kg ,回收率为 83 6 %~ 115 2 % ,相对标准偏差为 8 1%~ 9 8%。  相似文献   

14.
Cheng YC  Wang CC  Chen YL  Wu SM 《Electrophoresis》2012,33(9-10):1443-1448
This study proposes a capillary electrophoresis method incorporating large volume sample stacking, EOF and sweeping for detection of common preservatives used in cosmetic products. The method was developed using chemometric experimental design (fractional factorial design and central composite design) to determine multiple separation variables by efficient steps. The samples were loaded by hydrodynamic injection (10 psi, 90 s), and separated by phosphate buffer (50 mM, pH 3) containing 30% methanol and 80 mM SDS at -20 kV. During method validation, calibration curves were found to be linear over a range of 5-100 μg/mL for butyl paraben and isobutyl paraben; 0.05-10 μg/mL for ethyl paraben; 0.2-50 μg/mL for dehydroacetic acid; 0.5-70 μg/mL for methyl paraben; 5-350 μg/mL for sorbic acid; 0.02-450 μg/mL for p-hydroxybenzoic acid and 0.05-10 μg/mL for salicylic acid and benzoic acid. The analytes were analysed simultaneously and their detection limits (S/N = 3) were down to 0.005-2 μg/mL. The analysis method was successfully used for detection of preservatives used in commercial cosmetics.  相似文献   

15.
建立了速冻食品中山梨酸和苯甲酸的毛细管气相色谱检测方法。样品用石油醚-乙醚高速匀浆的方法提取后,通过改变酸度而改变其在有机相和水相中分配比的方法,去除脂肪等杂质的干扰,用FFAP毛细管色谱柱FID检测器进行检测。该方法测定结果的相对标准偏差为1.4%~6.6%,回收率为90.5%~96.9%,检出限为1mg/kg。  相似文献   

16.
Novel polymer monolith microextraction (PMME) using a poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) monolith in conjunction with capillary zone electrophoresis (CZE) was developed for the determination of several angiotensin II receptor antagonists (ARA-IIs) in human urine. The extraction device consisted of a regular plastic syringe (1 mL), a poly(MAA-EGDMA) monolithic capillary (2 cm x 530 microm I.D.) and a plastic pinhead connecting the former two components seamlessly. The extraction was achieved by driving the sample solution through the monolithic capillary tube using a syringe infusion pump, and for the desorption step, an aliquot of organic solvent was injected via the monolithic capillary and collected into a vial for subsequent analysis by CZE. The best separation was realized at 25 kV using a buffer that consisted of 50% acetonitrile and 50% buffer solution (v/v) containing 10 mM disodium hydrogenphosphate (adjusted to pH 2.3 with 1M hydrochloric acid). The method was successfully applied to the determination of telmisartan (T), irbesartan (I) and losartan (L) in urine samples with candesartan (C) as internal standard, yielding the detection limit of 15-20 ng/mL. Close correlation coefficients (R>0.999) and excellent method reproducibility were obtained for all the analytes over a linear range of 0.08-3 microg/mL.  相似文献   

17.
A rapid and highly sensitive method is described for the extraction and determination of di- and tributyltin in PVC samples using headspace liquid phase microextraction followed by an analysis with graphite furnace atomic absorption spectrometry (HSLPME/ GFAAS). The analytes were derivatized in situ with sodium tetraethylborate and concentrated in a 2 ??l microdrop of benzyl alcohol suspended from the tip of a conventional GC microsyringe. The ethylated species then were directly transferred into a graphite furnace and quantified. The extractions were carried out for 5 ml sample solution (8 ml vial) adjusted at pH 5, with derivatization at 22 °C for 15 min in a 2% sodium tetraethylborate. The experimental parameters impacting the performance of HS-LPME were also investigated. According to the analysis, the linearity range was from 5.0 to 250.0 ng l-1 with a detection limit of 0.5 ng l-1 for dibutyltin and from 1.7 to 170.0 ng l-1 with a detection limit of 0.17 ng l-1 for tributyltin. Method RSD values were below 1.5%. Finally, the analysis of spiked PVC and water samples revealed that matrix had little effect upon extraction.  相似文献   

18.
A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.  相似文献   

19.
《Analytical letters》2012,45(13):1875-1884
A headspace liquid phase microextraction (HS-LPME) method has been developed and optimized for the residual solvent determination in pharmaceutical products. A microdrop of n-hexanol containing isopropanol (as internal standard) was suspended at the tip of a gas chromatographic syringe and exposed to the headspace of the sample solution. After extraction for an optimized time, the microdrop was retracted into the syringe and injected directly into a GC injection port. Critical experimental factors, including extraction solvent, temperature, ionic strength, stirring rate, extraction time, equilibrium time, drop volume, and sample volume were investigated and optimized. Compared with the static headspace technique, HS-LPME method showed superior results, being compatible with the pharmaceutical samples.  相似文献   

20.
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL− 1, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号