首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微波合成法, 调整己二酸和2,6-吡啶二甲酸2种二酸单体的配比, 使其与联苯四胺进行三元共聚, 制备出一系列新型含脂肪链结构的聚苯并咪唑(PBI)类质子交换膜, 并用红外光谱、 热重分析进行了表征, 对膜的吸水率、 溶胀率、 质子传导率、 机械强度及抗氧化性能等进行了测试. 当己二酸与2,6-吡啶二甲酸的摩尔比为3: 2时, 所制备的PBI-C2膜掺杂磷酸后在160℃下的质子传导率可达30 mS/cm, 拉伸强度在常温下可达77.54 MPa, 断裂伸长率为39.25%, 最大储能模量为9.0623 MPa, 最大损耗模量为8.36 MPa, 玻璃化转变温度为360℃, 芬顿试验192 h后膜的降解率仅为0.21%, 表明PBI-C2膜在高温质子交换膜燃料电池中具有较好的应用前景.  相似文献   

2.
借助引发剂过硫酸钾(KPS),采用原位聚合法将苯乙烯(St)与Gemini型阳离子分子顺丁烯二酸二乙酯撑基双[辛烷基二甲基氯/溴化铵](G8-2-8)在季铵化壳聚糖(QCS)的醋酸溶液中,引发聚合形成不同嵌段比例(St与G8-2-8的摩尔比)的嵌段聚合物。 然后利用戊二醛(GA)为交联剂将QCS交联形成网状结构,将上述线性嵌段聚合物“锁定”在交联的QCS网状结构中,制备了一系列具有半互穿网络结构(Semi-IPN)的阴离子导电膜。 性能测试的结果表明,该系列膜具有较高的机械性能和电导率。 当G8-2-8含量为QCS质量的20%,嵌段比例为5:1时,表现出最高的离子交换量(1.35 mmol/g),断裂伸长率(26.47%)和电导率(70 ℃,6.97×10-2 S/cm)。 热稳定性测定结果表明,该膜具有良好的热稳定性能,最低分解温度高于210 ℃。  相似文献   

3.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

4.
A novel poly(ether-imide)-based alkaline anion exchange membrane with no free base has been prepared and characterized for its ionic conductivity in water, which is a critical metric of its applicability in a liquid-fed direct methanol fuel cell. The poly(ether-imide)-based membranes were prepared by chloromethylation, quaternization and alkalization of commercial poly(ether-imide) and the derivatives were characterized by NMR. The chemical and thermal stabilities were investigated by measuring changes of ionic conductivities when the membranes were placed in various alkaline concentrations and temperatures for 24 h. The membranes were stable at all concentrations of KOH at room temperature, but not at elevated temperatures. The membranes were stable in 1.0 M KOH solution up to 80 °C without losing membrane integrity. The measured conductivity of the formed membrane ranged from 2.28 to 3.51 × 10−3 S/cm at room temperature. This preliminary study indicates that functionalized poly(ether-imide) has suitable conductivity suggesting that it can be used as an alkaline anion exchange membrane in fuel cell applications.  相似文献   

5.
以海藻酸钠 (SA)和N 异丙基丙烯酰胺 (NIPAM)为原料 ,制备出具有温度敏感性的半互穿网络水凝胶 (SA PNIPAMsemi IPN) .主要研究了海藻酸钠用量、水介质温度及pH值对该凝胶溶胀速率的影响 .结果表明 ,在PNIPAM最低临界溶解温度 (LCST)以下 ,该凝胶的溶胀速率随着凝胶网络中SA组分的增加而增大 ,且溶胀速率取决于高分子链的松弛速率 ;pH对凝胶溶胀速率的影响与温度有关 ,温度对溶胀速率的影响与pH有关 .  相似文献   

6.
In this paper, a new solvent-free route for preparing proton-conductive membranes is proposed. Flexible and fiber-supported polymer electrolyte membranes, as potential proton exchange membranes, were readily obtained by in situ polymerization of a homogenous solution that consisted of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO, polymer)–monomer mixtures of styrene (ST) and divinylbenzene (DVB), which was pre-cast onto SEFAR PETEX fibers. Factors such as the components of the casting solution and the sulfonation time, were fully investigated. The membrane structure and components were confirmed by FTIR-ATR spectra and SEM-EDXA images, and the thermal stability was examined via TGA and DrTGA. The membrane exhibited a proton conductivity of about 0.07 S/cm at 100% humidity and at room temperature, which is close to that of Nafion 117 at identical conditions (around 0.08 S/cm), whereas its thickness (about 120 μm) was less than that of Nafion 117. The tensile strength and the elongation at the break of the membrane were 31.2 MPa and 71%, respectively, which are several times higher than those of Nafion (about 6.16 MPa tensile strength and 36% elongation ratio). The dimensional change ratio of the membrane between the wet and dry states was below 3%, which is much lower than that of Nafion 117. The membrane showed a high thermal stability up to 400 °C. The method can be applied to other compatible systems of (aromatic) polymers and (aromatic) monomers.  相似文献   

7.
研究了壳聚糖-丝心蛋白半互穿聚合物网络型膜对pH值和离子的敏感性,发现该膜在pH<3.3时溶胀度剧烈增加;在pH=2时,是否出现溶胀极大值与膜组分的含量及交联剂的含量有关;膜在不同pH值溶液中可交替溶胀和收缩,且这种溶胀-收缩行为重复可逆。同时,该膜在不同离子溶液中的溶胀度亦不同;在相同离子强度的溶液中,此膜在3价离子中的溶胀度最大。  相似文献   

8.
研究了壳聚糖-聚乙烯基恶唑啉半互穿聚合物网络膜对PH值的敏感性,发现该膜在PH〈6时溶胀度迅速增加,在PH=3.2时达到最大值;膜在不同PH值溶液中可交替溶胀收缩,且这种溶胀-收缩行为重复可逆。  相似文献   

9.
The lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications. To improve the performance, we introduced ionic crosslinking into high-cationic-ratio AEMs to suppress high water uptake and swelling while further improving the hydroxide conductivity. Remarkably, PEP80-20PS achieved a hydroxide conductivity of 354.3 mS cm−1 at 80 °C while remaining mechanically stable. Compared with the base polymer PEP80, the water uptake of PEP80-20PS decreased by 69 % from 813 % to 350 %, and the swelling decreased substantially by 85 % from 350.0 % to 50.2 % at 80 °C. PEP80-20PS also showed excellent alkaline stability, 84.7 % remained after 35 days of treatment with an aqueous KOH solution. The chemical design in this study represents a significant advancement toward the development of simultaneously highly stable and conductive AEMs for fuel cell applications.  相似文献   

10.
A series of thermosensitive and fast-response poly(vinyl alcohol) (PVA)/poly(N-isopropylacrylamide) (PNIPA) hydrogels were prepared by incorporating PVA into cross-linked PNIPA to form a semi-interpenetrating polymeric network (semi-IPN). Compared to the conventional PNIPA hydrogel, the semi-IPN hydrogels thus prepared exhibit significantly faster response rates and undergo full deswelling in 1 min (lose about 95% water within 1 min) when the temperature is raised above their lower critical solution temperature, and have larger equilibrium swelling ratios at room temperature. These improved properties are attributed to the incorporation of PVA, which forms water-releasing channels and results in increased hydrophilicity, into the PNIPA hydrogel networks.  相似文献   

11.
将聚氨酯(PU)与聚N-异丙基丙烯酰胺(PNIPAM)半互穿网络聚合物(semi-IPN)通过浸入沉淀相转化方法制备成微孔膜,并从亲水性、吸水溶胀性以及透湿性等方面对其温度响应性进行了讨论.PNIPAM的引入使膜的亲水性、吸水性和透湿性大为改善,并显著提高了膜的温度响应能力;但与此同时也使得膜的韧性降低.当PU/PNIPAM为3/1时,可获得最好的综合性能.同传统无孔致密膜相比,PU/PNIPAM semi-IPN微孔膜的透湿机理是基于微孔的开闭,在维持显著的温敏透湿性的同时可实现较高的高温透湿量.  相似文献   

12.
Alkaline stable anion exchange membranes based on the cross-linked poly(arylene ether sulfone) grafted with dual quaternary piperidine (XPAES-DP) units were synthesized. The chemical structure of the synthesized PAES-DP was validated using 1H-NMR and FT-IR spectroscopy. The physicochemical, thermal, and mechanical properties of XPAES-DP membranes were compared with those of two linear PAES based membranes grafted with single piperidine (PAES-P) unit and conventional trimethyl amine (PAES-TM). XPAES-DP membrane showed the ionic conductivity of 0.021 S cm−1 at 40 °C which was much higher than that of PAES-P and PAES-TM because of the possession of more quaternary ammonium groups in the cross-linked structure. This cross-linked structure of the XPAES-DP membrane resulted in a higher tensile strength of 18.11 MPa than that of PAES-P, 17.09 MPa. In addition, as the XPAES-DP membrane shows consistency in the ionic conductivity even after 96 h in 3 M KOH solution with a minor change, its chemical stability was assured for the application of anion exchange membrane fuel cell. The single-cell assembled with XPAES-DP membrane displayed a power density of 109 mWcm−2 at 80 °C under 100% relative humidity.  相似文献   

13.
A concept of preparing high‐temperature proton exchange membranes with layer‐by‐layer (LBL) self‐assembly technique was proposed and the sulfonated polyetheretherketone (SPEEK) and polyurethane (PU) with 200 LBL deposition cycles denoting (SPEEK/PU)200 membrane was prepared in this research. Owing to the strong electrostatic interaction between ? group in SPEEK and ? C? N+ group in PU, (SPEEK/PU)200 membrane with LBL self‐assembly structure showed a favorable structural stability. The phosphoric acid (PA)‐doped (SPEEK/PU)200 membrane showed a higher proton conductivity relative to PA doped SPEEK/PU membrane by solution casting method (SPEEK/PU)200/40%PA membrane possessed a proton conductivity value of 2.90 × 10?2 S/cm at 150 °C under anhydrous conditions. The LBL self‐assembly structure provided a possibility to reduce the negative effect from polymer skeleton blocking charge carrier species even immobilizing protons. Moreover, the (SPEEK/PU)200 membrane presented the particularly noteworthy mechanical property even with PA doping. The tensile stress values at break were 72.8 and 24.1 MPa, respectively, for (SPEEK/PU)200 and (SPEEK/PU)200/40%PA membrane at room temperature, which were obviously higher than the reported values of 15.9 and 2.81 MPa for SPEEK/PU and SPEEK/PU/60%PA membrane. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3446–3454  相似文献   

14.
A composite membrane was fabricated using a novel approach based on the ionic liquids 1-butyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium hexafluorophosphate, sulfonated polyetheretherketone (SPEEK), and phosphoric acid. This proton conducting composite membrane shows promise for operation in high temperature proton exchange membrane fuel cells at working temperatures up to 160 °C without humidification. Proton conductivity at a level of 2.0 × 10? 2 S/cm was achieved at 160 °C by the composite membrane with a molar ratio of 1:0.6:9 for SPEEK, 1-butyl-3-methylimidazolium (BMIM) cation and phosphoric acid, respectively. The sulfonation degree was 0.643 per polymer repeat unit with over 90% of the sulfate fixed anions forming a salt complex with BMIM cations. The tensile stress at break of the composite membrane was 15.5 MPa at room temperature, and it decreased from 4.1 to 1.9 MPa when the temperature increased from 110 to 160 °C, respectively.  相似文献   

15.
PVA碱性凝胶聚合物电解质薄膜电化学稳定性研究   总被引:6,自引:0,他引:6  
应用溶解—铸膜法制备聚乙烯醇(polyvinylalcohol,PVA)碱性凝胶聚合物电解质(gelpolymerelectrolyte,GPE)薄膜.交流阻抗(EIS)测试表明,随着KOH含量的增加,该薄膜的离子电导率表现为先增大而后减小的变化趋势,当KOH含量为42%(bymass,下同)时,电导率达到最大值,为2.01×10-3S/cm.X射线衍射(XRD)结果表明,当膜中KOH含量大于20%时,晶态的PVA就逐渐转变为非晶态结构.又当KOH含量增加到一定值后,由于体系中未电离的非晶态KOH量的增多而导致离子电导率下降.循环伏安(CV)和拉曼光谱(Raman)结果表明,该薄膜具有很好的电化学稳定性,可应用于碱性二次电池.  相似文献   

16.
The zone-drawing method (ZD) was applied to electrochemically synthesized polypyrrole films containing tosylate (PPy/TsO) and the mechanical and electrical properties of the resulting films were investigated. It was found that the electrical conductivity of the zone-drawn film reached 365 S cm−1 in the drawing direction, which was 4.7 times that of the original film. The tensile properties of the zone-drawn film were improved and Young's modulus and strength at break increased to 4.32 GPa and 90.1 MPa from 0.53 GPa and 40.4 MPa of the as-synthesized film, respectively. The dynamic storage modulus (E) increased by the zone-drawing over a whole experimental temperature range and attained 7.0 GPa at room temperature and 4.0 GPa even at 200°C. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
采用辐射接枝法将氯甲基苯乙烯(VBC)接枝到四氟乙烯-全氟烷氧基乙烯基醚共聚物(PFA)基底上并对其进行季铵化和碱性化改性制备了阴离子交换膜(PFA-g-PVBC).对制得的膜采用薄膜拉伸试验、热重(TG)、热水和热碱处理等方法考察了其机械性能、热稳定性和化学稳定性.结果表明:PFA-g-PVBC阴离子交换膜具有良好的机械性能,该膜在60℃去离子水中和室温下碱性溶液中可稳定存在,但在60℃碱性溶液中因Hofmann降解反应和直接亲核取代反应而导致其电导率下降.将该膜应用于常温"自呼吸"式碱性直接乙醇燃料电池中,30mAcm-2恒电流放电情况下,电池可一次性连续放电10h以上,累计放电时间长达30h.  相似文献   

18.
以2,6-二甲基聚苯醚(PPO)为原料, 经溴代及N-甲基咪唑季铵化反应, 制备了N-甲基咪唑季铵化PPO, 并进行了红外光谱(FTIR)和氢核磁共振波谱(1H NMR)表征.所得季铵化产物与聚乙烯醇(PVA)按不同比例共混后用戊二醛交联成膜, 在碱性液中浸泡转化为OH-型, 得到一系列阴离子交换膜.通过扫描电子显微镜(SEM) 、交流阻抗(AC)、拉伸实验和热重分析(TGA)等手段考察了膜的微观形貌及电导率、力学性能、热稳定性及耐碱性等性能.结果表明, 膜的外观形貌平整均一; 含水率为50.4%~151.2%; 溶胀度为79.2%~164.2%; 离子交换容量为0.47~1.52 mmol/g; 90℃时, M4膜的电导率高达49.1 mS/cm; 断裂伸长率达到128%, 极大改善了PPO膜应力易裂的状况.同时, N-甲基咪唑鎓基团分解温度达到170℃, 高于常用的阴离子交换膜中的季铵基团(120℃).在2 mol/L的NaOH溶液中浸泡192 h后, 电导率仅下降19%, 具备良好的耐碱性能力.  相似文献   

19.
以1,4-双(二苯基膦)丁烷为交联剂,以具有四甲基联苯结构的聚芳醚酮为基体材料,分别制备了刚性三苯基膦和柔性三丁基膦修饰的阴离子交联膜材料.交联剂在交联结构形成的过程中转变成季膦盐,在提高膜材料机械稳定性的同时保持离子交换功能基团的含量.研究了2种阴离子交换膜的尺寸稳定性、电导率、机械性能及耐碱稳定性等.研究结果表明,当交联度为20%时,三苯基膦与三丁基膦修饰的阴离子交换膜的拉伸强度分别由未交联时的27和18 MPa提高到45和30 MPa;交联的膜材料在60℃的3 mol/L KOH溶液中浸泡120 h后,三苯基膦修饰的阴离子交换膜的电导率保留率为81%,三丁基膦修饰的阴离子交换膜的电导率保留率为69%,膜的耐碱稳定性均较未交联时有明显提高.交联度相同时,三苯基膦修饰的阴离子交换膜表现出更高的拉伸强度和更好的耐碱稳定性.  相似文献   

20.
A type of polymer-in-salt electrolyte composed of poly( vinyl alcohol), KOH and water was prepared by a solution casting method. X-ray diffraction proves that the high concentration of KOH in the electrolyte is in an amorphous state. The ionic conductivities of the PVA-KOH-H2O electrolytes increased as the concentration of KOH increased, and the alkaline electrolyte with PVA/KOH 1/3 (mass ratio) exhibited the highest ionic conductivity of 0. 15 S/cm at room temperature, as measured by electrochemical impedance spectroscopy. The temperature dependence of the conductivity is found to be in agreement with the Arrhenius equation. The potential stability window at the metal/electrolyte interface was of 1.4 V for the nickel electrode determined by cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号