首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Density functional theory (UB3LYP/6-31G(d,p)) was used to determine substituent effects on the singlet-triplet-state energy gap for 21 meta-substituted phenylnitrenium ions. It was found that strongly electron-donating substituents stabilize the triplet state relative to the singlet state. With sufficiently strong meta electron donors (e.g., m,m'-diaminophenylnitrenium ion) the triplet is predicted to be the ground state. Analysis of equilibrium geometries, Kohn-Sham orbital distributions, and Mulliken spin densities for the triplet states of this series of nitrenium ions leads to the conclusion that there are two spatially distinct types of low-energy triplet states. Simple arylnitrenium ions such as phenylnitrenium ions as well as those having electron-withdrawing or weakly donating meta substituents have lowest-energy triplet states that are n,pi in nature. That is, one singly occupied molecular orbital is orthogonal to the plane of the phenyl ring and one is coplanar. These n,pi triplets are generally characterized by large ArNH bond angles (ca. 130-132 degrees ) and an NH bond that is perpendicular to the plane of the phenyl ring. In contrast, meta donor arylnitrenium ions have a lowest-energy triplet state best described as pi,pi. That is, both singly occupied molecular orbitals are orthogonal to the aromatic ring. Such pi,pi states are characterized by NH bonds that are coplanar with the phenyl ring and have ArNH bond angles that are more acute (ca. 110-111 degrees ). These triplet nitrenium ions have electronic structures analogous to those of meta-benzoquinodimethane derivatives.  相似文献   

2.
We have examined singlet-triplet energy separations in different phosphinidenes (RP) substituted by first- and second-row elements, making use of ab initio molecular orbital theory. Our main purpose is to find out the substituents that particularly favor the singlet electronic state. The QCISD(T)/6-311++G(3df,2p) + ZPE level has been applied to small molecules and the CISD(Q) and QCISD(T) with the 6-311G(d,p) basis set for all species considered. We have identified few factors that come into play rendering the singlet phosphinidene more stable than the triplet. The parent phosphinidene, PH, has a triplet ground state lying 28 kcal/mol below the closed-shell singlet excited state. The triplet ground state is mainly favored when negative hyperconjugation is involved. In the boryl-, alkyl-, and silyl-substituted phosphinidenes, the triplet state remains by far the ground state. When the substituents have pi-type lone pair electrons (i.e., -NX(2), -PX(2), -OX, -SX), the singlet state becomes stabilized by such an amount that both states have similar energies or even a change in ground state occurs. The most stabilized singlet ground states are attributed to PSF and PSCl. P and S have similar p-orbital sizes, making pi-delocalization easier. Implantation of alkyl and/or amino groups in the beta-position of amino- and phosphinophosphinidenes also contributes to a singlet stabilization. Bulky beta-groups also destabilize the triplet state by a steric effect. From a practical viewpoint, amino (P-NR(2)) and phosphino (P-PR(2)) derivatives bearing large alkyl groups (R) are the most plausible and feasible targets for preparing phosphinidenes possessing a closed-shell singlet ground state.  相似文献   

3.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

4.
We use electronic structure modeling, mainly density functional methods, to characterize a variety of long-lived bisaryl triplet carbenes. The bisaryl systems have a triplet ground state, favored by a substantial delocalization of the spin into the aromatic rings. One can imagine two extreme cases of the bonding in these species, representable as valence isomers. In the first case, spin delocalization is minor and incidental; the spin is predominantly located on the central carbene carbon. In the second case, spins are separated by large distances and are found primarily on the aromatic rings; the rings are linked by an allenic bridge. The bisphenyl carbenes tend toward the first limit. They can be kinetically stabilized by ortho substituents which shield the reactive center and para substituents which protect that site which has substantial spin density. The bond angle at carbene is opened from about 142 degrees (the B3LYP/6-31G value for the parent bis(phenyl)carbene) to 160 degrees or more by these substituents. Bisanthryl carbenes illustrate the second extreme, favoring a D(2)(d)() structure and possessing a low-lying open shell singlet state. A hypothetical phenyl-9-anthrylcarbine lies between the carbine and diradical extemes. The same principle which guides the design of stabilized diphenylcarbene carbenes and substitution of reactive sites by bulky protective groups serves to stabilize the bis-9-anthrylcarbene biradical.  相似文献   

5.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

6.
Diaryl acetylenes, in which one of the aryl groups is either a pyridine or a pyrazine, undergo efficient triplet state photocycloaddition to 1,4-cyclohexadiene with formation of 1,5-diaryl substituted tetracyclo[3.3.0.0(2,8).0(4,6)]octanes (homoquadricyclanes). In the case of pyrazinyl acetylenes, the primary homoquadricyclane products undergo a secondary photochemical rearangement leading to diaryl substituted tricyclo[3.2.1.0(4,6)]oct-2-enes. Mechanistic and photophysical studies suggest that photocycloaddition proceeds through an electrophilic triplet excited state whereas the subsequent rearrangement to the tricyclooctenes proceeds through a singlet excited state. Chemical and quantum yields for the cycloaddition, in general, correlate with the electron acceptor character of aryl substituents but are attenuated by photophysical factors, such as the competition between the conversion of acetylene singlet excited state into the reactive triplet excited states (intersystem crossing: ISC) and/or to the radical-anion (photoelectron transfer from the diene to the excited acetylene: PET). Dramatically enhanced ISC between pi-pi S(1) state and "phantom" n,pi triplet excited state is likely to be important in directing reactivity to the triplet pathway. The role of PET can be minimized by the judicious choice of reaction conditions (solvent, concentration, etc.). From a practical perspective, such reactions are interesting because "capping" of the triple bond with the polycyclic framework orients the terminal aryl (4-pyridyl, 4-tetrafluoropyridyl, phenyl, etc.) groups in an almost perfect 60 degrees angle and renders such molecules promising supramolecular building blocks, especially in the design of metal coordination polymers.  相似文献   

7.
Linear sulfur-carbon chains C(n)S (n=1-6) of astronomical interest were examined by means of several theoretical methods. The three smallest compounds of the series were chosen to evaluate the performance of several computational models, including Hartree-Fock theory, density functional theory with the Becke's three parameter exchange functional and the correlation functional of Lee, Yang, and Parr (B3LYP), and electron-correlated methods (second-order Moller-Plesset perturbation method (MP2), configuration interaction method including single and double excitations (CISD), and quadratic configuration interaction method including single and double excitations (QCISD) in combination with a large variety of basis sets. The systematic comparison between the experiment and theory indicates that the B3LYP/6-311G** method can be considered suitable for the study of the electronic structures of the C(n)S compounds. The electronic ground states of the C(n)S molecules alternate between 1Sigma and 3Sigma for odd and even values of n, respectively. The B3LYP/6-311G** wave functions for these electronic ground states were analyzed by means of the atoms in molecules (AIM) and natural bond orbital (NBO) methods. Both approaches suggest that the electronic structures for the singlet and triplet compounds must be considered separately. According to the NBO method, singlet compounds can be properly represented by acetylenic structures with alternating single and triple bonds (S[triple bond]C-C[triple bond]C...). However, triplet compounds are better described by means of double bond-double bond cumulenic structures (S=C=C=C=C...) as a consequence of the average between different alpha and beta electronic densities. AIM delocalization indexes and NBO interactions between localized orbitals also indicate that these structures are strongly pi delocalized. Finally, the different singlet and triplet structures proposed provide a consistent explanation for the geometries, dipole moments, and spin-density values of the C(n)S compounds studied.  相似文献   

8.
The geometries and relative stabilities of the singlet and triplet states of phenyl- (Cs), diphenyl- (C2), 1-naphthyl- (Cs), di(1-naphthyl)- (C2), and 9-anthryl-substituted (Cs) carbenes were investigated at the B3LYP/6-311+G(d,p) + ZPVE level of density functional theory. The singlet-triplet energy separations (DeltaEST), 2.7, 2.9, 3.4, 3.7, and 5.7 kcal/mol, respectively, after including an empirical correction (2.8 kcal/mol) based on the error in the computed singlet-triplet gap for methylene versus experiment, are in good agreement with available experimental values. Consistent with literature reports, triplet di(9-anthryl)carbene has a linear, D2d symmetrical, allene structure with 1.336 A C=C bond lengths and considerable biradical character. B3LYP favors such cumulene biradical structures and triplet spin states and predicts a large (>15 kcal/mol) "di(9-anthryl)carbene" singlet-triplet (biradical) energy gap. The resonance stabilization of both singlet and triplet carbenes increases modestly with the size of the arene substituent and overall, (di)arylcarbenes, both singlet and triplet, are better stabilized by bigger substituents. For example, methylene is stabilized more by a naphthyl than a phenyl group (singlets, 26.6 versus 24.4; and triplets, 20.9 versus 18.1 kcal/mol, respectively). The carbene geometries are affected by both steric effects and arene-carbene orbital interactions (sigma-p and p-pi). For instance, the central angles at the carbene are widened by a second arene group, which leads to increased s-character and shorter carbene bond lengths (i.e., C-C, C-H). In general, the aromaticity of the substituted rings in triplet carbenes is most affected by the presence of the unpaired electrons.  相似文献   

9.
The irradiation of acyloximes was studied by theoretical methods. CASPT2/6-31G*//CASSCF/6-31G* calculations, using an active space of 14 electrons in 11 orbitals, indicate that S2 should be the spectroscopic state, and its relaxation leads directly to N-O bond breakage due to coupling between the imine pi* and the sigma* N-O orbitals. Subsequent calculations at the B3PW91/6-31+G* level suggest that the resulting iminyl radicals are able to cyclize to the five- or six-membered ring, depending on the presence of a phenyl group as a spacer, a process that has been verified experimentally. The photochemical aspects of the more common five-membered ring formation, such as excited-state quenching, quantum yield, excited-state sensitizers, laser flash photolysis experiments, Stern-Volmer plot, and luminescence measurements, were investigated. These studies indicate that singlet and triplet excited states undergo the same reaction. Emission lifetimes of ca. tau = 10.6 micros for compound 11 are suggestive of triplet parentage, while no fluorescence was detected, in agreement with the computed MEP energy profile.  相似文献   

10.
UB3LYP/6-31G* calculations find that alpha-dicarbonyl-annelated cyclopentadienyl radical 1 has a sigma ground state, which is formed by excitation of an electron from the in-phase combination of carbonyl lone-pair orbitals into the singly occupied pi orbital. Similarly, tetrakis-annelated cyclooctatetraene 3 is calculated to have very-low-lying singlet and triplet excited states, which result from excitations of electrons from the b1g combination of lone pair orbitals into the empty pi nonbonding MO of the COT ring.  相似文献   

11.
通过对二苯基重氮甲烷进行光照射产生了一系列于邻位和对位具有不同大小取代基的三线态二苯基卡宾.用紫外可见光谱对其进行了直接观察,并利用激光闪光光解法测定了三线态二苯基卡宾在室温脱氧苯溶液中的寿命,由此表明在邻位和对位里引入庞大的取代基对三线态二苯基卡宾具有更好的稳定效应.  相似文献   

12.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

13.
The stabilisation of the carbene centre in a complex can be achieved either by the metal moiety or the carbon substituents. The balance between these two stabilising effects determines the nature of the M=C bond and therefore the reactivity of the metal complexes. Introducing two vicinal phosphorus groups as substituents of the carbene centre proved to be rewarding, since depending on the coordination number of this atom different electronic properties are observed. Indeed, a sigma(3)-P atom possesses a lone pair that can interact with a carbene centre by destabilising its vacant p(pi) orbital. On the contrary a sigma(4)-P group presents low lying sigma* orbitals which can be involved in delocalising electronic density in the carbene p(pi) orbital by negative hyperconjugation. Therefore, PCP carbene complexes can exhibit either an electrophilic or nucleophilic reactivity depending on the nature of the phosphorus group and the metal centre. Carbenes complexes of early and late transition metals, but also of lanthanides are discussed in this perspective.  相似文献   

14.
Singlet ground-state geometry optimization of the monomer, four dimers, and the trimer of [Pt(bph)(CO)(2)], where bph = biphenyl dianion, was performed at the B3LYP level of density functional theory (DFT) with a mixed basis set (6-311G** on C, O, and H atoms; the Stuttgart/Dresden (SDD) effective core potential (ECP) on the Pt core; [6s5p3d] on the Pt valence shell). The aggregation was based on Pt[bond]Pt binding as well as on pi[bond]pi and electrostatic interactions. The lowest-lying triplet-state geometries of the monomer, one dimer, and the trimer of the complex were also optimized using the above theory. Significant shortening of the Pt[bond]Pt bond was recorded in the triplet state compared to the singlet one. A number of low-energy singlet and triplet allowed excited states were calculated using time-dependent density functional theory (TDDFT) and analyzed with respect to absorption, excitation, and emission spectra collected under various conditions. Simulated spectra of the monomer and dimer based on the singlet excited states were correlated with the absorption spectrum. The emission in concentrated solution was due to the triplet dimer, and the emitting states were (3)MLCT and Pt-centered states.  相似文献   

15.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

16.
Computations on 2,6-dibromo-4-tert-butyl-2',6'-bis(trifluoromethyl)-4'-isopropyldiphenylcarbene (1) using ab initio and density functional theory methods underscore the unusual stability of the triplet over the singlet state. At the B3LYP/6-311G(d,p) level, the triplet state had a slightly bent central C-C-C bond angle of 167 degrees, whereas this angle in the singlet was 134 degrees. The B3LYP singlet-triplet splitting (12.2 kcal/mol) was larger than that of the parent molecule (5.8 kcal/mol), diphenylcarbene (2), which also has a triplet ground state. The energy of a suitable isodesmic reaction showed the triplet and singlet states of (1) to be destabilized, by 6.3 and 12.5 kcal/mol, respectively, due to the combined effects of the CF3, Br, and alkyl substituents. The linear-coplanar form of (3)(1), which might facilitate dimerization or electrophilic attack at the more exposed diradical center, was prohibitively (35.9 kcal/mol) higher in energy. Our results confirm Tomioka's conclusion that the triplet diarylcarbene, ortho-substituted with bulky CF3 and Br substituents, is persistent due to steric protection of the diradical center. Dimerization and other possible reaction pathways are inhibited, not only by the bulky ortho substituents but also by the para alkyl groups. The increase in stability of the triplet ((3)(1)) state relative to the singlet ((1)(1)) state does not influence the reactivity directly.  相似文献   

17.
Density functional theory and CASSCF calculations have been used to determine equilibrium geometries and vibrational frequencies of metal-capped one-dimensional pi-conjugated complexes (H3P)Au(C[triple chemical bond]C)(n)(Ph) (n = 1-6), (H3P)Au(C[triple chemical bond]CC6H4)(C[triple chemical bond]CPh), and H3P--Au(C[triple chemical bond]CC6H4)C[triple chemical bond]CAu--PH3 in their ground states and selected low-lying pi(pi)* excited states. Vertical excitation energies for spin-allowed singlet-singlet and spin-forbidden singlet-triplet transitions determined by the time-dependent density functional theory show good agreement with available experimental observations. Calculations indicate that the lowest energy 3(pi(pi)*) excited state is unlikely populated by the direct electronic excitation, while the low-lying singlet and triplet states, slightly higher in energy than the lowest triplet state, are easily accessible by the excitation light used in experiments. A series of radiationless transitions among related excited states yield the lowest 3(pi(pi)*) state, which has enough long lifetimes to exhibit its photochemical reactivities.  相似文献   

18.
The heavy dipnictenes (RE=ER, where E=P, As, Sb, and Bi with the substituent R) have essentially planar geometry and appreciable strength in pi-bonding, unlike related heavier main group 14 analogues of alkenes as concluded recently by Power. This work demonstrated that the protonated pnictenes behave more like the heavy carbene for their weak pi-bonding character from the computational study with the B3LYP/6-311++G** method. For example, although both phosphinidene (HP) and the phosphonium ion (H2P+) are isoelectronic to silylenes, the pi-bonding tendency of the former is rather strong and it forms a planar adduct with both the stable carbene and stable silylene ((HCNH)2E, where E=C and Si). In contrast, the latter forms trans-bent adducts with the two species. These results can be interpreted in terms of the Carter-Goddard-Malrieu-Trinquier (CGMT) model, and the fact that the value of DeltaEST [E(triplet)-E(singlet)] of the HP fragment increases significantly after protonation. All other heavy pnictenes resemble the phosphinidene. In contrast, nitrene (HN) and nitrenium (H2N+) have a ground triplet state, thus both have strong pi-bonding character similar to that of carbene.  相似文献   

19.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

20.
The 13C chemical shifts in selected nitrilimines, nitriles, acetylenes, allenes, and singlet carbenes have been calculated using density-functional theory [PBE0/6-311++G(2df,pd)] and the gauge including atomic orbital (GIAO) method. The effects of substitution on the 13C chemical shifts in nitrilimines, R1-CNN-R2, have been examined. The carbon nucleus is generally found to be deshielded by substituents in the order CH3 < NH2 < OH < F. Comparison with nitriles, acetylenes, and allenes shows that this effect is related to the presence of the cumulated functionality, C=N=N. Terminal N-substitution is found to have a larger effect than C-substitution due to a large increase in chemical shielding anisotropy. The electronic structure of nitrilimines has recently been shown to possess a carbene component whose resonance contribution varies widely with substitution, and, as previously reported, insight into the electronic structure can be gained by an analysis of the shielding tensor, especially for carbenes. Accordingly, the components of the diagonalized 13C shielding tensor for nitrilimines and stable singlet carbenes have been examined. This analysis suggests that diaminonitrilimine, H2N-CNN-NH2, may be a stable carbene, and, to the best of our knowledge, it would be the first acyclic, unsaturated stable carbene ever reported. Finally, a detailed analysis of the 13C chemical shifts shows that an increase in the dipolar character of nitrilimines induces a shielding at the carbon nucleus, while an increase in allenic or carbenic character tends to cause a deshielding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号