首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new modified carbon paste electrode (CPE) based on a recently synthesized Schiff base complex of Fe(III) as a suitable carrier for I ion is described. The electrode exhibits a super Nernstian slope of 71.0±0.3 mV per decade for I ion over a wide concentration range from 1.0×10−6 to 5.0×10−1 M, with a low detection limit of 6.5×10−7 M. It has a relatively fast response time, a satisfactory reproducibility and relatively long life time. The proposed sensor shows a fairly good selectivity toward I ion in comparison to other common anions. The potentiometric response is independent of the pH of the test solution in the pH range 3.5–10.0. Spectrophotometric studies confirmed the redox-type response mechanism of the electrode toward iodide ion. The proposed electrode was used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

2.
Singh AK  Mehtab S  Saxena P 《Talanta》2006,69(5):1143-1148
A novel bromide ion-selective PVC membrane sensor based on 2,3,10,11-tetraphenyl-1,4,9,12-tetraazacyclohexadeca-1,3,9,11-tetraene zinc(II)complex (I) as carrier has been developed. The electrode exhibited wide working concentration range 2.2 × 10−6 to 1.0 × 10−1 M and a limit of detection as 1.4 × 10−6 M with a Nernstian slope of 59.2 ± 0.5 mV per decade. The response time of electrode was 20 s over entire concentration range. The electrode possesses the advantages of low resistance, fast response and good selectivities for bromide over a variety of other anions and could be used in a pH range of 3.5–9.5. It was successfully used as an indicator electrode in the potentiometric titration of bromide ions with silver ion and also in the determination of bromide in real samples.  相似文献   

3.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

4.
An adsorptive stripping voltammetric (AdSV) procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The Co(II) signal was enhanced by exploitation of the catalytic process in the presence of nitrite. Ni(II) and Co(II) signals are better separated than in the case of bismuth film electrodes. Calibration graphs for an accumulation time of 120 s are linear from 1 × 10−9 to 1 × 10−7 mol L−1 and from 1 × 10−10 to 5 × 10−9 mol L−1 for Ni(II) and Co(II), respectively. The proposed procedure was applied for Ni(II) and Co(II) determination in water certified reference materials.  相似文献   

5.
A PVC membrane electrode based on bis-2-thiophenal propanediamine (TPDA) coated directly on graphite is described. The electrode exhibits a Nernstian response for Cu2+ over a very wide concentration range (1.0×10−1 to 6.0×10−8 M) with a detection limit of 3.0×10−8 M (2.56 ng ml−1). It has a fast response time and can be used for at least 2 months without any major deviation. The proposed sensor revealed very good selectivities for Cu2+ over a wide variety of other metal ions and could be used in the pH range of 3.0–7.0. It was successfully used for direct determination of copper in black tea and as an indicator electrode in potentiometric titration of copper ion.  相似文献   

6.
Trace amounts of nickel(II) can function as a trigger (=reaction initiator) in an autocatalytic reaction with the sodium sulfite/hydrogen peroxide system. Based on this finding, sub-μg L−1 levels of nickel(II) were determined by a time measurement using the autocatalytic reaction. The detection range using the above method was 10−9–10−5 M, the detection limit (3σ) was 8.1 × 10−10 M (0.047 μg L−1), and the relative standard deviation was 2.66% at nickel(II) concentration of 10−7 M (n = 7). This method was applied to length detection-flow injection analysis. The detection range for the flow injection analysis was 2 × 10−9–2 × 10−3 M. The detection limit (3σ) was 1.4 × 10−9 M (0.082 μg L−1), and the relative standard deviation was 1.86 at initial nickel(II) concentration of 10−6 M (n = 7).  相似文献   

7.
Electrochemical studies of famotidine were carried out using voltammetric techniques: cyclic voltammetry, linear sweep and square wave adsorptive stripping voltammetry. The dependence of the current on pH, buffer concentration, nature of the buffer, and scan rate was investigated. The best results for the determination of famotidine were obtained in MOPS buffer solution at pH 6.7. This electroanalytical procedure enabled to determine famotidine in the concentration range 1 × 10−9–4 × 10−8 mol L−1 by linear sweep adsorptive stripping voltammetry (LS AdSV) and 5 × 10−10–6 × 10−8 mol L−1 by square wave adsorptive stripping voltammetry (SW AdSV). Repeatability, precision and accuracy of the developed methods were checked. The detection and quantification limits were found to be 1.8 × 10−10 and 6.2 × 10−10 mol L−1 for LS AdSV and 4.9 × 10−11 and 1.6 × 10−10 mol L−1 for SW AdSV, respectively. The method was applied for the determination of famotidine in urine.  相似文献   

8.
Campuzano S  Pedrero M  Pingarrón JM 《Talanta》2005,66(5):1310-1319
The construction and performance under flow-injection conditions of an integrated amperometric biosensor for hydrogen peroxide is reported. The design of the bioelectrode is based on a mercaptopropionic acid (MPA) self-assembled monolayer (SAM) modified gold disk electrode on which horseradish peroxidase (HRP, 24.3 U) was immobilized by cross-linking with glutaraldehyde together with the mediator tetrathiafulvalene (TTF, 1 μmol), which was entrapped in the three-dimensional aggregate formed.

The amperometric biosensor allows the obtention of reproducible flow injection amperometric responses at an applied potential of 0.00 V in 0.05 mol L−1 phosphate buffer, pH 7.0 (flow rate: 1.40 mL min−1, injection volume: 150 μL), with a range of linearity for hydrogen peroxide within the 2.0 × 10−7–1.0 × 10−4 mol L−1 concentration range (slope: (2.33 ± 0.02) × 10−2 A mol−1 L, r = 0.999). A detection limit of 6.9 × 10−8 mol L−1 was obtained together with a R.S.D. (n = 50) of 2.7% for a hydrogen peroxide concentration level of 5.0 × 10−5 mol L−1. The immobilization method showed a good reproducibility with a R.S.D. of 5.3% for five different electrodes. Moreover, the useful lifetime of one single biosensor was estimated in 13 days.

The SAM-based biosensor was applied for the determination of hydrogen peroxide in rainwater and in a hair dye. The results obtained were validated by comparison with those obtained with a spectrophotometric reference method. In addition, the recovery of hydrogen peroxide in sterilised milk was tested.  相似文献   


9.
Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT11 and S. mutans IB03987 with and without antigen I/II, respectively, using isothermal titration calorimetry. In addition, protein adsorption to the cell surfaces was determined spectrophotometrically. S. mutans LT11 with antigen I/II, yielded a much higher, exothermic adsorption enthalpy at pH 6.8 (ranging from −2073 × 10−9 to −31707 × 10−9 μJ per bacterium) when mixed with saliva than did S. mutans IB03987 (−165 × 10−9 to −1107 × 10−9 μJ per bacterium) at all bacterial concentrations studied (5 × 109, 5 × 108, and 5 × 107 ml−1), largest effects per bacterium being observed for the lowest concentration. However, the enthalpy of salivary protein adsorption to S. mutans LT11 became smaller at pH 5.8. Adsorption isotherms for the S. mutans LT11 showed considerable protein adsorption at pH 6.8 (1.2–2.1 mg/m2), that decreased only slightly at pH 5.8 (1.1–1.6 mg/m2), with the largest amount adsorbed at the lowest bacterial concentration. This suggests that the protein(s) in the saliva with the strongest affinity for antigen I/II is (are) readily depleted from saliva. In conclusion, antigen I/II surface proteins on S. mutans play a determinant role in adsorption of salivary proteins through the creation of enthalpically favorable adsorption sites.  相似文献   

10.
A biomimetic potentiometric sensor for the specific recognition of methylphosphonic acid (MPA), the degradation product of nerve agents sarin, soman, VX, etc., was designed. This involves the preparation of MPA imprinted polymer particles and removal of the template by soxhlet extraction. Subsequently, the leached MIP particles were dispersed in 2-nitrophenyloctyl ether (plasticizer) and embedded in polyvinyl chloride matrix. The sensor responds to MPA in the concentration range 5 × 10−8 to 1 × 10−4 and 1 × 10−3 to 1 × 10−1 M with a detection limit of 5 × 10−8 M. The selectivity of the sensor has been tested with respect to chemical analogues such as phosphoric acid, sodium dihydrogen phosphate, organophosphorous pesticide and triazine herbicides. The utility of the sensor was tested for field monitoring of MPA in spiked ground water.  相似文献   

11.
Four different 9,10-anthraquinone derivatives were studied to characterize their abilities as lead ion carrier in PVC membrane electrodes. The electrode based on 1,8-dihydroxy-2,7-bis(prop-2′-enyl)-9,10-anthraquinone exhibits a Nernstian response for Pb2+ ions over a wide concentration range (2.0×10−3–2.0×10−6 M). The response time of the sensor is 30 s and the membrane can be used for more than four months without observing any deviation. The electrode revealed comparatively good selectivities with respect to alkali, alkaline earth and some transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of sulfate ions with a lead ion solution.  相似文献   

12.
Various amino acid derivatives of monascus pigments were synthesized. The effects of pigment derivatives on the pigment adsorption ratio, electrophoretic mobility (EPM) of bacterial cells, and antibacterial activity were investigated under varying conditions of pigment type, pigment concentration, pH, and ionic strength. Two hydrophobic and two hydrophilic derivatives were selected as model pigments. There was a close relationship between the antimicrobial activity and the pigment adsorption ratio. Against Escherichia coli, the hydrophobic l-Tyr and l-Phe derivatives (log P = 3.18 and 3.57) exhibited high antimicrobial activities (MIC = 8 and 16 mg/L) and high cellular adsorption ratios (9.6 and 10.9 mg/L). The hydrophilic l-Glu and l-Asn derivatives (log P = 1.40 and 0.47) exhibited low activities (MIC = 64 and 128 mg/L) and low adsorption ratios (4.7 and 4.0 mg/L). The electrophoretic mobility of 11 different bacteria varied between −1.93 × 10−8 and −1.19 × 10−8 m2 V−1 s−1 regardless of Gram+ or Gram. The l-Phe derivative showed low MIC values (high antimicrobial activities) against bacteria with a high electrophoretic mobility. A positive linearity between the pigment adsorption ratio and the electrophoretic mobility was established. When the four pigment derivatives were added to E. coli solutions, the electrophoretic mobility of cells in all cases sharply increased with an increasing pigment concentration. The mobility value was high for hydrophobic pigment derivatives in descending order of l-Phe (0.8 × 10−8 m2 V−1 s−1), l-Tyr (0.68 × 10−8 m2 V−1 s−1), l-Glu (0.46 × 10−8 m2 V−1 s−1), and l-Asn (0.44 × 10−8 m2 V−1 s−1). Additional adsorption of the hydrophobic derivatives probably occurred due to a hydrophobic interaction between the pigment and the pigment-coated cells. The electrophoretic mobility decreased gradually with an increasing pH and/or ionic strength with both addition and no addition of the pigment derivatives. The pattern of change of the pigment adsorption ratio under varying pH and/or ionic strength values was similar to the pattern for electrophoretic mobility.  相似文献   

13.
A new PVC membrane electrode for Zn2+ ions based on tetra(2-aminophenyl) porphyrin (TAPP) as membrane carrier is prepared. The sensor exhibits a linear stable response over a wide concentration range (5.0×10−5 to 1.0×10−1 M) with a slope of 26.5 mV/decade and a limit of detection 3.0×10−5 M (1.96 ppm). It has a response time of about l0 s and can be used for at least 8 months without any divergence in potential. The propose membrane sensor revealed good selectivities for Zn2+ over a wide variety of other metal ions and can be used in pH range of 3.0–6.0. It was successfully applied to the direct determination of zinc in a pharmaceutical sample and also as an indicator electrode in potentiometric titration of Zn2+ ions.  相似文献   

14.
Gupta VK  Goyal RN  Al Khayat M  Kumar P  Bachheti N 《Talanta》2006,69(5):1149-1155
Poly(vinyl chloride) (PVC) based membranes containing 4-tert-butylcalix[4]arene (I) as an electroactive material alongwith anion excluder sodiumtetraphenylborate (NaTPB) and plasticizer tri-butylphosphate (TBP) have been developed to fabricate a new zinc-selective sensor. Out of various compositions, the best performance was exhibited by the membrane having I, NaTPB, TBP and PVC in the ratio 8:5:100:200 (w/w). The sensor works well in the concentration range 9.8 × 10−6 to 1.0 × 10−1 mol dm−3 with a near-Nernstian slope of 28.0 ± 1.0 mV/decade of activity. The detection limit is down to 5.0 × 10−7 mol dm−3. The working pH range of this sensor is 2.5–4.3 and it works well in partially non-aqueous medium up to 15% (v/v) (methanol, ethanol and acetone). It exhibits a fast response time of 30 s and could be used for more than four months without any considerable change in response characteristics. It has excellent selectivity for Zn(II) over other mono-, bi- and trivalent cations which have been reported to cause interference in the working of other sensors. It has been successfully used as an indicator electrode in the potentiometric titration of Zn(II) against EDTA and also to estimate zinc ions in industrial waste waters.  相似文献   

15.
Huang F  Jin G  Liu Y  Kong J 《Talanta》2008,74(5):1435-1441
Phenylephrine (i.e. PHE) and chlorprothixene (i.e. CPT), two effective and important antipsychotic drugs with low redox activity, were found generating an irreversible anodic peak at about +0.89 V (vs. SCE) and +1.04 V in 0.05 M HAc–NaAc (pH 5.0) or NH2CH2COOH–HCl (pH 2.4) buffer solution at poly(4-aminobenzene sulfonic acid) modified glassy carbon electrode (i.e. poly(4-ABSA)/GC), respectively. Sensitive and quantitative measurement for them based on the anodic peaks was established under the optimum conditions. The anodic peak current was linear to PHE and CPT concentrations from 1 × 10−7 to 1.5 × 10−5 M and 2 × 10−6 to 4.5 × 10−5 M, the detection limits obtained were 1 × 10−8 and 1 × 10−7 M, separately. The modified electrode exhibited some excellent characteristics including easy regeneration, high stability, good reproducibility and selectivity. The method proposed was successfully applied to the determination of PHE and CPT in drug injections or tablets and proved to be reliable compared with ultraviolet spectrophotometry. The modified electrode was characterized by electrochemical methods.  相似文献   

16.
Three different mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit were investigated to characterize their abilities as copper(II) ion carriers in PVC-membrane electrodes. The electrode based on L1 exhibited a Nernstian response for Cu2+ ions over a wide concentration range (2×10−1 to 1×10−5 M) with a limit of detection of 8.0×10−6 M (0.5 p.p.m.). The response time of sensor is 15 s, and the membrane can be used for more than 3 months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, transition and heavy metal ions, and could be used in a pH range of 2.5–5.5. It was applied to the direct determination and potentiometric titration of the copper(II) ion.  相似文献   

17.
In this work, nickel hexacyanoferrate-modified electrode was developed to determine potassium ions in biodiesel by potentiometry. The modified electrodes exhibit a linear response to potassium ions in the concentration range of 4.0 × 10−5 to 1.0 × 10−2 mol L−1, with a detection limit of 1.9 × 10−5 mol L−1, and a near-Nernstian slope (53–55 mV per decade) at 25 °C. The method developed in this work was compared with flame photometry and the potassium concentration found in biodiesel showed that the modified electrode method gives results similar to those obtained by flame photometry.  相似文献   

18.
Li CY  Zhang XB  Jin Z  Han R  Shen GL  Yu RQ 《Analytica chimica acta》2006,580(2):143-148
An amide-linked 2,6-bis{[(2-hydroxy-5-tert-butylbenzyl)(pyridyl-2-methyl)-amino]-methyl}-4-methylphenol-ruthenium(II) tris(bipyridine) 2PF6 complex, 1, was first used to recognize Co(II) in EtOH/H2O (1:1, v/v) solution, with the ruthenium(II) tris(bipyridine) moiety selected as a fluorophore and the multi-substituted phenol unit chosen as a receptor. The fluorescence quenching of 1 was attributed to the formation of an inclusion complex between multi-substituted phenol unit and Co(II) by 1:1 complex ratio (K = 2.5 × 105), which has been utilized as the basis of the fabrication of the Co(II)-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Co(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Co(II) with a linear range covering from 1.0 × 10−7 to 5.0 × 10−5 M and a detection limit of 5 × 10−8 M. The experiment results show that the response behavior of 1 to Co(II) is pH-independent in medium condition (pH 4.5–9.5) and show excellent selectivity for Co(II) over transition metal cations except Cu(II). The chemosensor has been used for determination of Co(II) in water samples.  相似文献   

19.
Zhang BT  Zhao L  Lin JM 《Talanta》2008,74(5):1154-1159
Based on the chemiluminescence (CL) phenomena of folic acid in peroxomonosulfate-cobalt(II) system, a rapid and sensitive CL method was developed for determination of folic acid in pharmaceutical preparations and its urinary metabolism processes. Under the optimum conditions, the relative CL intensity was linear over the concentration ranging from 10−9 to 8 × 10−7 mol L−1 (R2 = 0.9991) with a detection limit as low as 6 × 10−10 mol L−1 (S/N = 3) and relative standard deviation was 2.63% for 2 × 10−8 mol L−1 folic acid (n = 11). This method has been successfully applied to the determination of folic acid in tablets and human urine. The blank CL emission was yielded owing to the formation of singlet oxygen molecular pair from the quenching experiment of 1,4-diazabicyclo[2.2.2]octane, and pterine-6-carboxylic acid might be the degradation intermediate in this system and it also acts an energy acceptor and sensitizes the chemiluminescence based on the studies of the CL and fluorescence spectra.  相似文献   

20.
Fenoterol and salbutamol were determined by electrogenerated chemiluminescence (ECL) coupled with flow injection analysis (FIA), using Ru(bpy)32+ as the luminescent substance. Fenoterol and salbutamol oxidize together with the ruthenium 2,2-bipyridyl at a platinum electrode, which leads to an increase in the luminescent intensity, and this increase is proportional to the analyte concentration. For fenoterol a linear calibration curve within the range from 1.0 × 10−5 to 1.0 × 10−4 mol l−1 was obtained with a correlation coefficient of 0.998 (n = 5) and for salbutamol the linear analytical curve was also obtained in this range with a correlation coefficient of 0.995 (n = 5). The relative standard deviation was estimated as ≤2.5% for 3 × 10−5 mol l−1 for fenoterol solution and as ≤1.3% for 5.0 × 10−5 mol l−1 salbutamol solution for 15 successive injections. The limit of detection for fenoterol was 2.4 × 10−7 mol l−1 and for salbutamol was 4.0 × 10−7 mol l−1. Fenoterol and salbutamol were successfully determined in drug tablets and the soluble components of the matrix did not interfere in the luminescent emission. The results obtained using the luminescent methodology were not statistically different from those obtained by UV-spectrophotometry at 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号