首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α-BaB2O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2C6N7O3)2⋅8 H2O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2C6N7O3)2⋅8 H2O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First-principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2C6N7O3) organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.  相似文献   

2.
We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8Cs0.2PbI3, we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕμ), and carrier diffusion length (LD) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 μs, high ϕμ of ≈18.56 cm2 V−1 s−1, and long LD of ≈7.85 μm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2PbI4. This carrier diffusion length is comparable to that of some perovskite single crystals (>5 μm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.  相似文献   

3.
在浓硫酸和3-巯基丙酸催化下,3′-三氟甲基苯基-2,2,2-三氟苯乙酮(1)和甲苯于40~50℃下缩合反应8 h,制得中间体-1,1-二(4-甲基苯基)-1-(3′-三氟甲基苯基)-2,2,2-三氟甲基乙烷(2),继而在光照和N-溴代丁二酰亚胺促进下,将中间体氧化得到二羧酸-1,1-二(4-羧基苯基)-1-(3′-三氟甲基苯基)-2,2,2-三氟甲基乙烷(3),二步反应总收率为77.4%.采用Yamazaki体系,3和9,9-二[(4-氨基苯氧基)苯基]呫吨进行溶液亲核缩聚反应,制得了一种高分子量的(数均分子量为43000,分子量分布为1.8)新型含三氟甲基和呫吨结构的聚酰胺.该聚酰胺为非晶态结构并具有良好的透光率(λcutoff=330 nm),其玻璃化转变温度(Tg)为242℃,在氮气气氛中5%的热失重温度(Td5)为465℃,800℃时的残炭率为50%.聚合物易溶于N,N-二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、间甲酚、吡啶(Py)和四氢呋喃(THF)等有机溶剂中,并可浇注得到韧性好和透明的薄膜,其拉伸强度为85 MPa,拉伸模量为2.0 GPa,断裂伸长率为10%.同时,该聚合物的体积电阻、表面电阻和介电常数分别为2.85×1015Ωcm,4.23×1014Ω和3.55(100 Hz),呈现了良好的电绝缘性能.  相似文献   

4.
本文报道一种新型Ni—Pd/碳化树脂催化剂的制备方法,用该法制备的催化剂具有高金属分散度和高机械强度,用于库仑法微量测定有机氧元素取得满意结果。文中对Ni和Pd颗粒在催化剂上表面形貌和分布、催化活性等作了初步探讨。  相似文献   

5.
丙烯/长链α-烯烃共聚物的~(13)C—NMR和红外光谱法测定组成陈辉,王建国,景凤英,庞德仁,黄葆同(中国科学院长春应用化学研究所,长春,130022)关键词丙烯/长链α-烯烃共聚物,(13)~C—NMR,红外光谱法,组成测定聚丙烯(PP)作为通用塑...  相似文献   

6.
以α/β类蛋白的2种典型折叠类型为研究对象,对205个低相似度蛋白样本中的π-π相互作用进行统计分析.计算结果表明,(α/β)8-barrel折叠中π-π相互作用的分布密度高于经典Rossmann折叠,且在关键的局部区域的差异更加显著;芳香族氨基酸在(α/β)8-barrel结构中更容易形成π-π相互作用;色氨酸对应的3种π-π相互作用组合在(α/β)8-barrel折叠中出现的几率显著高于经典Rossmann折叠;(α/β)8-barrel折叠中π-π相互作用形成复杂π网络的能力强于经典Rossmann折叠.上述结果表明,π-π相互作用在α/β类蛋白的不同折叠类型中存在特异性,其在稳定(α/β)8-barrel结构中的作用强于经典Rossmann折叠.  相似文献   

7.
采用共沉淀法制备了低温水煤气变换Au/α-Fe2O3催化剂。通过正交实验优化催化剂的还原活化条件,考察了金负载量对催化剂性能的影响。采用BET、XRD、UV-VIS、XRF、H2-TPR和O2-TPO等表征手段对催化剂的结构进行分析,并与其催化性能进行关联。结果表明,(1)采用10%-H2/N2还原气将催化剂在150 ℃原位还原9 h,其催化活性最高;(2)金的最佳负载量为8.00%,此时在催化剂制备过程中金的流失量较少,金粒子较小,也有利于抑制催化剂在反应过程中烧结;(3)TPR-TPO结果表明,金的负载量为8.00%时,Au/α-Fe2O3催化剂具有较易被还原、不易被氧化的性质,从而显示出最高催化活性。(4)Au/α-Fe2O3催化剂中的金以单质金(Au0)形式存在;其高活性与Au0-Fe3O4间的协同作用有关。  相似文献   

8.
以γ-Al2O3为载体,钼酸铵为氧化钼前驱体,采用在N2-H2气氛下的程序升温还原氮化反应,制备β-Mo2N0.78/γ-Al2O3催化剂,以噻吩为模型化合物,考察了该催化剂的加氢脱硫反应性能,以及反应温度、氢还原预处理和钴、镍助剂的引入等因素对催化剂活性的影响。结果表明,在320 ℃~400 ℃之间,随着反应温度的升高,催化剂的活性逐渐增加;预还原则降低了催化剂的活性;添加钴、镍均在一定负载量范围内可以改善β-Mo2N0.78/γ-Al2O3催化剂的加氢脱硫活性,但镍对催化剂活性的影响要小于钴。  相似文献   

9.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

10.
Easily accessible N-acyl-2-triphenylphosphonioglycinate tetrafluoroborates react smoothly with trimethylphosphite in the presence of methyltriphenylphosphonium iodide to give N-acyl-2-(dimethoxyphosphoryl)glycinates in good or very good yields. The dimethoxyphosphorylglycinates may be isolated by column chromatography, or used directly for the Wadsworth-Emmons synthesis of α,β-dehydro-α-amino acids in a one-pot procedure without purification.  相似文献   

11.
SO2-4/TiO2┐Al2O3┐SnO2催化剂的研制及其催化合成己二酸二辛酯高根之(曲阜师范大学化学系,曲阜273165)于世涛杨锦宗*(大连理工大学精细化工系,大连116012)关键词固体超强酸,SO2-4/TiO2-Al2O3-SnO2催化剂,...  相似文献   

12.
采用分步悬浮聚合法制备了由大孔聚二乙烯基苯和聚丙烯酸甲酯组成的聚合物互贯网络(Interpenetrating polymer networks IPN),经过乙二胺氨解,得到由疏水性的大孔聚二乙烯基苯和亲水性的聚丙烯酰乙二胺组成的聚合物互贯网络(polydivinylbenzene/polyacrylethylenediamine IPN即PDVB/PAEM IPN),测定了合成的IPN的物理和化学结构,研究了PDVB/PAEM IPN对pH 6.5的水溶液中双酚A (Bisphenol A即BPA)的吸附性能.结果表明,合成的PDVB/PAEM IPN是含有氨基和酰胺基的多孔性IPN;树脂对水溶液申双酚A的等量吸附焓在20kJ/mol~50kJ/mol之间;动态吸附及脱附实验表明,湿态PDVB/PAEM IPN树脂对水溶液中双酚A的饱和吸附量达到约30mg/mL.树脂可以通过乙醇再生.  相似文献   

13.
A new method has been developed for the preparation of α,β-unsaturated carboxylic acids and corresponding esters with (E)-stereoselectivity via the TiCl4-mediated olefination of aldehydes. The method, which uses readily available acetic acid or its alkyl esters as active methylene partners, is more flexible and complementary to conventional routes in the preparation of (E)-cinnamic acid derivatives.  相似文献   

14.
Neutrophils, also known as polymorphonuclear leukocytes (PMN), are the most common type of white blood cells, comprising about 50-70% of all white blood cells. In the event of inflammatory processes, neutrophils display increased mobility, tissue influx ability, prolonged life span, and an increased phagocytic capacity, constituting the initial participants in the cellular defense of the organism. One of the most important defense systems of neutrophils corresponds to their ability to mediate a strong oxidative burst through the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). While oxidative burst is important for the elimination of invading microorganisms, the overproduction of ROS and RNS or the impairment of endogenous antioxidant defenses may result to detrimental effects to the host. The nature and the extent of ROS and RNS production by neutrophils in response to different stimuli is, consequently, a matter of extensive research, with scientific reports showing an enormous variability on the detection methodologies employed. This review attempts to provide a critical assessment of the most common approaches to identify and quantify reactive species formed during the neutrophils’ oxidative burst. The detection mechanisms and performance, as well as advantages and limitations of the different methodologies, are scrutinized, focusing on the use of fluorimetric, chemiluminometric and colorimetric probes.  相似文献   

15.
High quality assays are needed in drug discovery to reduce the high attrition rate of lead compounds during primary screening. Capillary electrophoresis (CE) represents a versatile micro-separation technique for resolution of enzyme-catalyzed reactions, including substrate(s), product(s), cofactor(s) and their stereoisomers, which is needed for reliable characterization of biomolecular interactions in free solution. This review article provides a critical overview of new advances in CE for drug screening over the past five years involving biologically relevant enzymes of therapeutic interest, including transferases, hydrolases, oxidoreductases, and isomerases. The basic principles and major configurations in CE, as well as data processing methods needed for rigorous characterization of enzyme inhibition are described. New developments in functional screening of small molecules that modulate the activity of disease-related enzymes are also discussed. Although inhibition is a widely measured response in most enzyme assays, other important outcomes of ligand interactions on protein structure/function that impact the therapeutic potential of a drug will also be highlighted, such as enzyme stabilization, activation and/or catalytic uncoupling. CE offers a selective platform for drug screening that reduces false-positives while also enabling the analysis of low amounts of complex sample mixtures with minimal sample handling.  相似文献   

16.
Screen-printed electrodes (SPEs), which are used as economical electrochemical substrates, have gone through significant improvements over the past few decades with respect to both their format and their printing materials. Because of their advantageous material properties, such as disposability, simplicity, and rapid responses, SPEs have been successfully utilised for the rapid in situ analysis of environmental pollutants. This critical review describes the basic fabrication principles, the configuration designs of SPEs and the hybrid analytical techniques based on SPEs. We mainly overview the electrochemical applications of SPEs in environmental analysis over the past 3 years, including the determination of organic compounds, heavy metals and gas pollutants.  相似文献   

17.
18.
Heterocyclic compounds occupy an important position in chemistry because of their wide range of uses in drug design, photochemistry, agrochemicals, and other fields. Indole and indazole scaffolds are available from natural and synthetic sources, and molecules containing these scaffolds have been shown to have various biological effects, including anti-inflammatory, antibacterial, antiviral, antifungal, analgesic, anticancer, antioxidant, anticonvulsant, antidepressant, and antihypertensive activities. Indole and indazole molecules bind to receptors with high affinity, and thus are useful for the study of bioactive compounds involved in multiple pathways. In this review, we highlight the antihypertensive activity and the mechanisms of action of indole and indazole derivatives. In addition, structure–activity relationship studies of the antihypertensive effect are presented.  相似文献   

19.
Carapa guianensis is a tree from Meliaceae family traditionally known as andiroba that has a wide range of biological properties, including therapeutic effects, antioxidant activities, insecticidal and repellent effects that can be used in biotechnological approaches to medicine, agriculture, and cosmetic products. Therefore, we aim to explore the biological activities exhibited by this species and their respective biotechnological applications of interest. For this, a systematic review was carried out following the PRISMA guidelines dated from 1993 to 2022 through the Scopus, Web of Science and Agricultural Research Database (Base de Dados da Pesquisa Agropecuária - BDPA), screened for biological activity/bioactive compounds. A total of 129 studies were included in the PRISMA flow analysis. Biological properties and major bioactive compounds, as well as biotechnological approaches could be identified. The biological activity from C. guianensis could be observed in different vegetative parts through diverse methods of extractions. These activities are mainly due to the unsaturated fatty acids and bioactive compounds, such as the limonoids and a small fraction of phenolic compounds. Gedunin-type limonoids, like gedunin and its derivatives, represent the class of compounds that show the highest bioactivities in different applications.  相似文献   

20.
The continuous development of resistance to antibiotic drugs by microorganisms causes high mortality and morbidity. Pathogens with distinct features and biochemical abilities make them destructive to human health. Therefore, early identification of the pathogen is of substantial importance for quick ailments and healthcare outcomes. Several phenotype methods are used for the identification and resistance determination but most of the conventional procedures are time-consuming, costly, and give qualitative results. Recently, great focus has been made on the utilization of advanced techniques for microbial identification. This review is focused on the research studies performed in the last five years for the identification of microorganisms particularly, bacteria using advanced spectroscopic techniques including mass spectrometry (MS), infrared (IR) spectroscopy, Raman spectroscopy (RS), and nuclear magnetic resonance (NMR) spectroscopy. Among all the techniques, MS techniques, particularly MALDI-TOF/MS have been widely utilized for microbial identification. A total of 44 bacteria i.e., 6 Staphylococcus spp., 3 Enterococcus spp., 6 Bacillus spp., 4 Streptococcus spp., 6 Salmonella spp., and one from each genus including Escherichia, Acinetobacter, Pseudomonas, Proteus, Clostridioides, Candida, Brucella, Burkholderia, Francisella, Yersinia, Moraxella, Vibrio, Shigella, Serratia, Citrobacter, and Haemophilus (spp.) were discussed in the review for their identification using the above-mentioned techniques. Among all the identified microorganisms, 21% of studies have been conducted for the identification of E. coli, 14% for S. aureus followed by 37% for other microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号