首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The strain rate, temperature, and microstructure-dependent, tensile-yielding behavior of three semi-crystalline polymers, namely high-density polyethylene (HDPE), polyamide 6 (PA6) and low-density polyethylene (LDPE), was investigated. It is found that, depending on the strain rate and temperature, the three polymers exhibit markedly different tensile deformation behavior, especially the shape of the stress-strain curves. LDPE exhibits a uniform extension and shows no obvious geometrically unstable effect, such as necking, during the overall tensile process. HDPE and PA6, on the other hand, show clear necking and cold-drawing phenomena during the uniaxial tensile process. When considering the effect of strain temperature on necking, significant differences between HDPE and PA6 emerge. For both, the heterogeneous necking disappears and homogeneous deformation occurs with increasing temperature. For HDPE, the homogeneous deformation takes place in the vicinity of the melting temperature, while for PA6, it takes place close to the glass transition temperature instead. The conventional yield point, corresponding to the force maximum in stress-strain curves, becomes less defined as the testing temperature is increased. It is applicable, to some extent, to combine the Brereton analysis and Considère construction to predict such a point quantitatively. However, this combination can only be suitable for homogeneously deformed material. In addition, it is found that the special, double yielding behavior will take place under certain deformation conditions for all three semi-crystalline polymers. With respect to judging the appearance of the double yielding of polymers, it seems that it can be estimated qualitatively by plotting the compression residual strain-applied strain curves of the samples.  相似文献   

2.
Diffusion of 1,2,3-benzotriazole (BT), as one of the volatile corrosion inhibitors (VCI) for copper and steel, through several polymers was investigated using molecular dynamics simulation (MD). MD were performed by employing the COMPASS force field to estimate the diffusivity of BT through polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and Nylon 6 as potential hosts for anticorrosion film packaging purposes. The diffusion coefficients (D) of BT in these polymers were calculated by constructing an amorphous cell, each containing BT and one of these polymers. After constructing the cell, a molecular dynamics simulation was performed to calculate the mean square displacement of the BT molecule. Simulation results showed that BT can diffuse through PVC easier than the other polymers. Among these hosts the Nylon 6 had the lowest D value, implying that this polymer can maintain BT for a long time. The temperature dependence of diffusion through PE, as the most common VCI film, was studied and the activation energy (Qd) and pre-exponential diffusion coefficient (D0) in Arrhenius equation were calculated.  相似文献   

3.
Transmission electron microscopy (TEM) of amorphous and semicrystalline isotactic polystyrene (iPS) thin films deformed well below T g, suggests the same crazing mechanism to operate in both cases. Therefore, by analogy with the amorphous case, highly entangled semicrystalline polymers, such as poly(ether ether ketone) (PEEK) should craze less readily in the glassy-semicrystalline state than iPS, which has a low degree of entanglement. Since this is confirmed by observation, it is reasonable to extend this analogy, and invoke entanglement in order to account for the high fracture resistance of highly entangled semicrystalline polymers, such as polyoxymethylene, using models previously applied to glassy amorphous polymers. There are nevertheless often significant decreases in fracture toughness in polyoxymethylene as the crystallization temperature is raised and/or the molecular weight is reduced, which we attribute to entanglement loss during lamellar folding.  相似文献   

4.
Propylene‐ethylene copolymer/calcium carbonate (CaCO3) composites (weight ratio=50/50) toughened with high density polyethylene (HDPE) were prepared using a twin‐screw extruder; the HDPE content in composites was in the range of 0–4 wt.%. The notched impact strength of propylene‐ethylene copolymer/CaCO3 composites with 1.5 wt.% HDPE was 46% higher than that of propylene‐ethylene copolymer/CaCO3 composites. Differential scanning calorimetry (DSC) experiments showed that good miscibility between propylene‐ethylene copolymer and HDPE enhanced the interpenetration of the macromolecules located in the interface. It was shown that debonding of the small HDPE particles within the propylene‐ethylene copolymer matrix resulted in the formation of small voids; the subsequent plastic deformation of the propylene‐ethylene copolymer matrix next to the voids thinned the ligaments and led to large energy consumption.  相似文献   

5.
赵亮  苏建仓  潘亚峰  张喜波 《中国物理 B》2012,21(3):33102-033102
Based on the concepts of fast polarization, effective electric field and electron impact ionization criterion, the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated, and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived. According to this formula, it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers. By calculating the effective relative dielectric constants for different types of polymers, the theoretical relation for the electric breakdown strengths of common polymers is predicted. To verify the prediction, the polymers of PE (polyethylene), PTFE (polytetrafluoroethelene), PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator. The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE). This result is consistent with the theoretical prediction.  相似文献   

6.
The subject of this paper is the impact modification of polymers with elastomers via melt blending. A mathematical model was developed to account for the shape of the Izod S-curves (Izod values versus impact modifier content). Wu introduced the critical ligament thickness concept to explain the Brittle/Ductile Transition of polymers modified with elastomers: only when the ligament thickness (surface to surface distance of two rubber particles) is smaller than a critical value can the rubber particles promote toughness. In an ideal model with rubber particles distributed in an ordered lattice this transition would be a 90-degree step, whereas in practice this transition curve is more or less rounded. The smoothness of this transition is attributed in the present paper to the random distribution of rubber particles inside the polymer matrix: from this concept, an equation for the B/D Transition part of the S-curve was developed. This equation introduces the concept of the critical number of rubber particles, that is the number of particles within the ligament thickness distance necessary to trigger the toughness. The polymers investigated were polypropylene (PP) of different viscosity, polyamide (PA), polystyrene (PS), and polycarbonate (PC).  相似文献   

7.
《Composite Interfaces》2013,20(5-7):533-549
This paper investigates the effect of the interphase properties and the interfacial interactions between matrix and filler on mechanical properties of precipitated calcium carbonate (PCC)–polypropylene nanocomposites. PCC particles were coated with stearic acid (SA). The weight ratio of SA on the particles (w SA) ranged from 0 to 0.135 g SA/g PCC. The introduction of PCC particles resulted in an increase in stiffness and yield stress compared with the pristine polymeric matrix and, at the same time, it increased the impact resistance. The maximum improvement in the impact behaviour was achieved for the composites with w SA =0.045 corresponding to the theoretical monolayer ratio. A decrease in interfacial interactions between monolayer coated PCCs and the matrix with respect to the uncoated particles was observed by using a semi-empirical equation developed by Pukànszky. The low degree of interfacial interactions between particulate filler and matrix allows a matrix–particle debonding phenomenon, as shown by scanning electron microscopy analysis. Extensive plastic deformations were evident as well, promoting an improvement in toughness. The thickness of the interphase between particles and matrix was evaluated by using the Shen–Li model which is based on the hypothesis of a non-homogeneous interphase. It results that the thickness increased in the order uncoated < monolayer coated < 3% SA coated ? 13.5% SA coated particles. The thinner and stronger interphase found for the composite with uncoated particles can be explained with the high interaction between matrix and filler and the consequent low mobility of the polymeric chains.  相似文献   

8.
Stress-relaxation data are presented for two commercial grades of ABS and an ABS-polycarbonate blend over a temperature range which includes the glassy, transition, and entanglement regions. Reduced master curves and the shift factor, aT, are obtained and compared to data for fractionated polystyrene and polycarbonate; the principle of time-temperature superposition is shown to be as applicable to the relaxation data for these heterogeneous polymers as to similar data for homogeneous polymers. Compared with homogeneous polymers, the reduced curves for the composites are different in several ways: A slightly larger negative slope in the glassy region, a more diffuse transition region, a higher and broader entanglement plateau, and a smaller negative slope in the flow region are noted. For the two ABS polymers, the temperature dependences of aT are about that of a homogeneous polymer with an equivalent Tg, indicating that the discrete rubber particles do not alter the relative relaxational behavior of this heterogeneous system. For the ABS-polycarbonate blend (both phases continuous), the temperature dependence of aT is close to that of the polycarbonate component. suggesting that in this case the continuous phase with the longest relaxation times dominates the relaxational behavior of the composite.  相似文献   

9.
Blends of two highly crystalline polymers containing an elastomer were prepared to study the glass transition of the confined elastomer. The polymers chosen were high density poly ethylene (HDPE), polypropylene (PP), and two elastomers of a different nature: natural number (NR) and EPDM. The dynamic mechanical analyzer (DMA) technique was used to analyze the storage modulus of blends with elastomer content from 0% to 30% by weight, with the remainder made up of equal amounts of HDPE and PP, and blends with 10% of the elastomer, but varied ratios of polyolefins. We used the differentiation modification of the Arrhenius method in the kinetic analysis assuming an n‐order relaxation mechanism, which allowed detecting the percolation threshold of NR. Results indicate that both temperature and activation energy for glass transition (T g ) are dependent on the types of polymers in the blend and blend composition. The T g and E values of the unblended elastomers are higher than those in blends; this behavior is associated with the elastomer confinement and blend morphology.  相似文献   

10.
Fuping Yuan  Xiaolei Wu 《哲学杂志》2013,93(24):3248-3259
In the present study, a series of large-scale molecular dynamics simulations have been performed to investigate the atomistic scale fracture behaviours along the boundaries of primary twins in Cu with hierarchically nanotwinned structures (HTS), and compare their fracture behaviours with those in monolithic twins. The results indicate that crack propagation along [1?1?2] on the twin plane in monolithic nanotwins is brittle cleavage and fracture, resulting in low crack resistance and fracture toughness. However, the crack resistance along the boundaries of primary twins in HTS is much higher, and a smaller spacing of secondary twins (λ 2) leads to even higher fracture toughness. With large λ 2, the crack growth is achieved by void nucleation, growth and coalescence. However, considerable plastic deformation and enhanced fracture toughness in HTS could be achieved by the crack blunting and by the extensive dislocation accommodation ahead of the crack tip when λ 2 is small.  相似文献   

11.
Abstract

In view of the toughness and processing difficulty of high-density polyethylene (HDPE) film, the HDPE was modified by polypropylene (PP) and linear low density polyethylene (LLDPE), and the melt index, haze, dart impact strength, elongation at break were characterized. In addition the infrared spectra (IR), scanning electron microscopy (SEM), infrared image analysis, and differential scanning calorimetry (DSC) data were obtained. The results showed that the toughening effect of the 10%PP/30%LLDPE/60%HDPE composition was the best; the haze was reduced 6% and its dart impact strength and elongation at break were increased by 27.3% and 47%, respectively, relative to the pure HDPE. The blend of 10%PP/30%LLDPE/60%HDPE had compatibility. The melting point of the 10%PP/30%LLDPE/60%HDPE blend film increased by 5?°C compared with the pure HDPE film, with the results indicating the application fields of HDPE film could be widened.  相似文献   

12.
Ultra-thin high density polyethylene (HDPE) parts with two different molecular weights were prepared by microinjection molding (MIM). The dependence of crystalline morphology and orientation, as well as the resulting mechanical properties of the samples, on molecular weight is described. The toughness of the high-molecular-weight (HMW) sample was over 2 times that of the low-molecular-weight (LMW) one, in parallel with a significant increase of tensile strength. Microstructure characterizations, including differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS), were performed to investigate the variations of the microstructure. It is suggested that the increased crystallinity and higher degree of both molecular and lamellar orientation were beneficial to the enhancement of strength of the HMW sample. SAXS results showed that a highly oriented crystalline structure, i.e. shish-kebabs, were formed in parts of both of the two HDPE. Furthermore, a larger number of shish and kebab structure or lamellae was formed in the HMW sample due to the fact that the crystallinity was increased and the lamellar thickness and lateral crystallite size was reduced. Therefore, a stronger physical cross-linking network was formed in the HMW sample because of the increased connection points, which was in favor of the notable improvement of toughness. We suggest this issue is of great significance for achieving materials with high performance by tailoring the microstructure.  相似文献   

13.
Jumplike creep is considered as a reflection of the structural heterogeneity of amorphous polymers on the mesoscopic and nanoscopic levels. The D-450 epoxy resin, poly(vinyl chloride), poly(vinyl butyral), and a composite consisting of the D-450 epoxy resin and diabase microparticles are studied at a temperature of 290 K. The creep rate of the specimens under compression is measured with a laser interferometer in submicrometer-scale deformation increments. Periodic variations of the creep rate with time or under deformation correspond to a jumplike (stepwise) behavior of the creep. It is shown that diabase particles (5–10 μm in size) are responsible for the appearance of micrometer-scale jumps in the creep of the composite and that the deformation jumps on the nanometer level are comparable to the sizes of the globules. The role of the resolution of the method employed in the evaluation of the scale of deformation jumps and structural units is considered.  相似文献   

14.
Polypropylene (PP)/Ethylene‐propylene‐diene terpolymer (EPDM) blends were dynamically vulcanized with dicumyl peroxide (DCP), using a two‐step method of even dispersion of DCP in EPDM at first and then cross‐linking at elevated temperature. The results showed that though both chain scission and cross‐linking occurred, the cross‐linking reaction predominated in this process and the number of EPDM particles was increased, accompanied with a reduction in particle size and uniform dispersion. Differential scanning calorimetry (DSC) results indicated the existence of PP/EPDM graft copolymer. The essential work of fracture (EWF) results showed that both the specific essential work of fracture (w e ) and the specific plastic work (w p ) increased with increasing EPDM content, the fracture toughness and plastic energy consumption (βw p ) could be improved simultaneously and the ratio of w e and βw p could be controlled by adjusting EPDM and DCP content.  相似文献   

15.
Measurements of the current-voltage characteristics of micron-size bridges made of Bi2Sr2CaCu2Ox single-crystal whiskers are carried out. It is found that, at temperatures below the superconducting transition temperature, the current-voltage characteristics exhibit quasi-periodic voltage jumps with segments of constant differential resistance whose value is proportional to the jump number. For the narrowest bridges (0.5–1 ¼m), up to ten voltage jumps are observed. The result of the experiment is explained by the formation of vortex lines under the current effect.  相似文献   

16.
Short ceramic fiber reinforced polypropylene composites have been investigated to determine their static and dynamic fracture toughness for different reinforcing fiber contents. The composites were reinforced with fibers produced by a carding technique combined with needle-punching. Static fracture toughness (K c) was measured on single-edge notched tensile (SEN-T) specimens, while dynamic fracture toughness (K d) was tested by impact strength Charpy specimens. Specimens in both cases were cut transverse (T) and in longitudinal (L) directions. Test results show that dynamic fracture toughness is larger than the static one. During loading of SEN-T specimens the burst-type acoustic emission (AE) signals were monitored. From AE signals it can be concluded that the main damage form is the pull-out in the T specimens, and debonding in L ones. These results were supported by scanning electron microscopy micrographs taken from fracture surfaces.  相似文献   

17.
Poly(ethylene oxide) (PEO) in the semi-crystalline state shows a reversible surface crystallization and melting; a temperature decrease leads to a certain crystal thickening, a temperature increase reversely to an expansion of the amorphous intercrystallite layers. Dynamic calorimetry provides a means to investigate the kinetics of the process. The structural rearrangement in the region of the crystalline-amorphous interface can only be accomplished if the chains can slide through the crystallites. One therefore expects the associated time to change with the crystallite thickness. Variations of the crystal thickness of PEO can be achieved by choosing different crystallization temperatures. We studied the effect of the crystal thickness employing temperature-modulated differential scanning calorimetry and heat wave spectroscopy, and by carrying out small-angle X-ray scattering experiments for the structural characterization. The effect of the crystal thickness is clearly observed. Results indicate that the sliding diffusion through the crystallites takes place by helical jumps of whole stems. Data yield the activation energy per unit length of the stems. Received 20 April 2001 and Received in final form 13 August 2001  相似文献   

18.
For this study, we investigated the effects of reactive gases (oxygen, nitrogen, and argon) on the shear behavior and fracture toughness of HDPE/steel joints by treating high-density polyethylene (HDPE) with plasma using a microwave method. We also investigated the effect of plasma treatment on the physical and chemical changes on the surface of HDPE. HDPE/steel joints were fabricated using a secondary bonding process. The results showed that the shear strength and fracture toughness of HDPE/steel joints treated with different reactive gases were ordered as follows, oxygen > nitrogen > argon. Specifically, the shear strength and fracture toughness of oxygen plasma-treated HDPE/steel joints were approximately 7600% and 2400% greater, respectively, than that of untreated HDPE/steel joints. The improvements in shear strength and fracture toughness are attributed to increase in surface roughness and the creation of carbonyl functional groups on the HDPE surface via plasma treatment.  相似文献   

19.
The mechanical properties and morphology of the composites of nylon 6, acrylonitrile-butadiene-styrene (ABS) rubber, and nano-SiO2 particles were examined as a function of the nano-SiO2 content. A mixture with separation and encapsulation microstructures existed in the nylon 6/ABS/nano-SiO2 at lower nano-SiO2 content, and ABS and nano-SiO2 improved the toughness synergistically, while obvious agglomeration appeared at higher nano-SiO2 content and the impact strength decreased. Moreover, the addition of nano-SiO2 particles also affected the dispersion of the rubber phase, resulting in the appearance of smaller rubber particles. The deformation and toughening mechanisms of the composites were also investigated; they resulted from rubber voiding, crack forking, and plastic deformation of the matrix.  相似文献   

20.
The fold and lateral surfaces of chain-folded lamellae of poly(bisphenol-A-co-etheroctane), containing both aliphatic CH2 and aromatic segments, were investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS). At low and high crystallization temperatures, the surfaces of the polymer films were shown to consist mainly of edge-on and flat-on lamellae, respectively. Surfaces with a mixture of edge-on and flat-on lamellae were produced at intermediate temperatures. The edge-on and flat-on lamellae were identified by using ions that recognize the flexible and rigid segments of the polymer. Ion images produced using selected ions that are related to the edge-on or flat-on orientation can be used to identify the location of these lamellae on the polymer surface. Our results indicate that ToF-SIMS can be used to detect different lamellar orientations at the surfaces of semi-crystalline polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号