首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
ABSTRACT

The radiation-induced solid-state polymerization of acenaphthylene was carried out under vacuum at room temperature. The monomer and obtained polymer samples were investigated by UV, FTIR, DSC, TG, and powder X-ray diffraction methods to characterize the polymer and elucidate the polymerization mechanism. The polymer samples were crystalline with melting points ranging in 380-390°C interval. Polymerization takes place through vinyl groups by a radical mechanism and crystal structure of monomer and polymer studied by powder X-ray diffraction were quite similar. The space group for both were P22 1 2 and cell parameters: a = 784.2 (6), b = 798.1(6), c = 1417.0(1) pm for monomer, and a = 791.7(8), b = 803.8(7), c =1431.0(1) pm for polymer. The similarity of crystal structures shows a topotactic polymerization of monomer.  相似文献   

2.
Poly(N-vinylcaprolactam), PNVCL, is a nonionic, nontoxic, water soluble, thermally sensitive and biocompatible polymer. It contains hydrophilic carboxylic and amide groups with hydrophobic carbon-carbon backbone suitable for biomedical applications. In this study, N-vinylcaprolactam was polymerized by free radical polymerization at 50, 60 and 70°C. The synthesized polymers were white powder, soluble in water and common organic solvents. The percent conversion vs. time plot is almost linear up to about 60% conversion without induction period. The activation energy of polymerization was calculated as 108.4 kJ/mol from the Arrhenius plot. FTIR and NMR results showed that polymerization takes place by opening of carbon-carbon double bond without any change in the caprolactam ring. Polymer was characterized by FTIR, 1H-NMR and 13C -NMR, DSC, TGA and XRD techniques. The DSC thermogram of monomer has shown a melting point at 37.3°C. The polymer has Tg value at 1.8°C and softening temperature at 68.8°C. It was determined from the X-Ray powder pattern that the polymerization proceed in the b-crystallographic axis direction.  相似文献   

3.
In this work, phenylisocyanate was polymerized in bulk and in a solution of THF by the complex base (CB), NaNH2/(CH3)3CONa catalyst under vacuum. The percent yield for bulk polymerization at ?20°C first increased with a slow rate reaching 32% conversion in 3 hours, then with a greater rate up to 86% in 6 hours. However, at 0°C the yields were relatively smaller and not very reproducible. The product obtained was a high molecular weight polymer, insoluble in most solvents, and partially crystalline. The polymerization in THF at ?20° gave 58% conversion in 9 hours with a high rate first, then a slower rate. The polymer samples were characterized by fractionation, FT-IR, DSC, NMR, TGA, and X-ray powder diffraction. The polymer samples in the solution polymerization contained trimer and oligomeric components. No glass transition temperature was observed at the temperature interval studied.  相似文献   

4.
A new kind of soluble structure‐ordered ladder‐like polysilsesquioxane with reactive side‐chain 2‐(4‐chloromethyl phenyl) ethyl groups ( L ) was first synthesized by stepwise coupling polymerization. The monomer, 2‐(4‐chloromethyl phenyl) ethyltrichlorosilane ( M ), was synthesized successfully by hydrosilylation reaction with dicyclopentadienylplatinum(II) chloride (Cp2PtCl2) ­catalyst. Monomer and polymer structures were characterized by FT‐IR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vapor pressure osmometry (VPO) and X‐ray diffraction (XRD). This novel reactive ladder‐like polymer has promise potential applications as initiator for atom transfer radical polymerization, and as precursor for a variety of advanced functional polymers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Radiation-induced solid-state polymerization of 3-aminocrotonamide (3-amino-2-butenamide) was carried out at room temperature, in open air atmosphere and under vacuum condition. The polymer obtained was white powder, soluble in methanol, but insoluble in water. The nature of polymers were investigated by IR, UV, x-ray, DP-MS, and elemental analysis to elucidate the mechanism of the polymerization. The polymer was crystalline with melting point in the range of 245–255°C. The cell parameters and space group of monomer and polymers were determined from powder x-ray diffraction patterns. The similarity of crystal structures of monomer and polymer indicated a topotactic polymerization. It was shown by spectroscopic investigations and elemental analyses that the polymerization proceeds by condensation reaction with evolution of one mole ammonia per two combined moles of monomer through a free radical mechanism. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
In this work, we report the preparation of graphene nanoplatelet which covalently functionalized with PMMA chains by introduction of vinyl groups onto graphene surface through simple esterification reaction between hydroxyl groups of graphite oxide and methacrylic anhydride. The synthesis is followed by in-situ polymerization with MMA monomers. The structural properties were characterized with X-ray diffraction spectroscopy (XRD) and scanning electronic microscopy (SEM) that showed the crystalline graphite is converted to individual layers during the synthesis steps. The grafting of PMMA chains was monitored with IR spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The TGA results revealed 40% wt of PMMA chains chemically grafted onto graphene surface. Significant increase in glass transition temperature (Tg) and existence of polymer chains in two positions (physically absorbed and chemically grafting onto graphite surface) are indicated by differential scanning calorimetric (DSC) analysis.  相似文献   

7.
Here we demonstrate a unique two‐dimensional polymer synthesis through topochemical polymerization via polymer crystal engineering, which is useful for controlling and designing the polymerization reactivity as well as the polymer chain and crystal structures. We have succeeded in the synthesis of a sheet polymer through the polymerization of alkylenediammonium (Z,Z)‐muconate as a multifunctional 1,3‐diene monomer in the crystalline state under the irradiation of UV and γ‐rays or upon heating in the dark. The photopolymerization reactivity of several muconates and the structural control of the obtained polymer are described. The stereochemical structure of the polymer and the polymerization mechanism are discussed on the basis of the results of IR and NMR spectroscopy, thermogravimetric measurements, and solid‐state hydrolysis for the transformation into poly(muconic acid). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3922–3929, 2004  相似文献   

8.
A series of A3‐type star poly(methylmethacrylate)/clay nanocomposites is prepared by in situ atom transfer radical polymerization (ATRP) initiated from organomodified montmorillonite containing quaternary trifunctional ATRP initiator. The first order kinetic plot shows a linear behavior, indicating the controlled character of the polymerization. The resulting nanocomposites are characterized by spectroscopic (XRD), thermal (DSC and TGA), and microscopic (TEM) analyses. The exfoliated nanocomposite has been obtained when polymerization was conducted with 1% of organic clay loading. Thermal analyses show that all nanocomposites have higher glass transition values and thermal stabilities compared to neat polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5257–5262  相似文献   

9.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

10.
1‐Benzocyclobutenyl methacrylate‐bearing methacrylate (BCBMA) backbone has been synthesized, and radical polymerization of the monomer was performed by utilizing 2, 2′‐azobisisobutyronitrile (AIBN) as initiator to result poly‐BCBMA. Differential scanning calorimetry (DSC) measurement of the derived poly‐BCBMA revealed the lowering of thermal isomerization temperature from that of nonsubstituted benzocyclobutene. The thermal decomposition temperature of BCBMA before and after thermal treatment was confirmed by thermogravimetric analysis (TGA). The results of the TGA observation did not show significant difference in both 5% and 10% weight loss temperature (Td5 and Td10). This result suggests that the thermal conversion of the poly‐BCBMA to the networked polymer take place without thermal decomposition of the main chain based on the methacrylate framework. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2175–2180  相似文献   

11.
The photopolymerization behavior of p-phenylene diacrylic acid dimethyl ester (p-PDA Me) crystal and the thermal behavior of the resultant poly-p-PDA Me were investigated. From the kinetic study of polymerization at various temperatures a topochemical process via a stepwise mechanism was observed. Continuous change from monomer to polymer crystals was demonstrated by x-ray diffraction pattern and DSC analysis. Crystallinity of the reacting phase was maintained at an extremely high degree during the polymerization process in support of monomer crystal lattice control. Thermal study on as-polymerized poly-p-PDA Me crystal confirmed that the thermal reaction was a polymer crystal lattice-controlled depolymerization, which was followed by miscellaneous processes that involved vaporization, sublimation, and deterioration of the oligomeric or monomeric units of p-PDA Me. Thermal stability was dependent on the molecular weight. All the results are compared with those of four-center-type photopolymerization in the crystalline state.  相似文献   

12.
采用界面自组装聚合的方法, 成功地制备出聚糠醛纳米球, 利用TEM, FT-IR, XRD, GPC及TG-DTA等技术对其形貌、结构等进行了表征, 并考查了单体浓度、催化剂用量以及乳化剂的存在与否对聚糠醛形貌等的影响. 结果表明, 由该方法合成的聚糠醛为不规则的结晶结构, 当乳化剂浓度在临界胶束浓度cmc附近、单体浓度在3~5 mol•L-1、催化剂的用量在10 mol•L-1左右时, 能够得到成球性好、粒径分布范围窄、平均尺寸在100 nm左右的聚糠醛纳米球结构材料. 利用该法在上述优化条件下合成的聚糠醛的Mw=2451, Mw/Mn=1.14, 且分子量分布窄. 聚糠醛分子链的柔韧性较强, 具有很好的加工性能. 该法具有合成条件温和、易于控制、纯化简单等众多优点, 而且省去了使用模板/消除模板的过程, 能够一步合成出大量聚糠醛纳米球.  相似文献   

13.
We have designed and synthesized rod–coil–rod triblock copolymers of controlled molecular weight by two‐step nitroxide‐mediated radical polymerization, where the rod part consists of “mesogen‐jacketed liquid crystalline polymer” (MJLCP). The MJLCP segment examined in our studies is poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) while the coil part is polyisoprene (PI). Characterization of the triblock copolymers by GPC, 1H and 13C NMR spectroscopies, TGA, DSC confirmed that the triblock copolymers were comprised of microphase‐separated low Tg amorphous PI and high Tg PMPCS blocks. Analysis of POM and 1D, 2D‐WAXD demonstrated that the triblock copolymers formed nematic liquid crystal phase. Morphological studies using TEM indicated the sample formed lamellar structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5949–5956, 2007  相似文献   

14.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

15.
From the viewpoint of controlled polymer synthesis, topochemical polymerization based on crystal engineering is very useful for controlling not only the primary chain structures but also the higher‐order structures of the crystalline polymers. We found a new type of topochemical polymerization of muconic and sorbic acid derivatives to give stereoregular and high‐molecular weight polymers under photo‐, X‐ray, and γ‐ray irradiation of the monomer crystals. In this article, we describe detailed features and the mechanism of the topochemical polymerization of diethyl‐(Z,Z)‐muconate as well as of various alkylammonium derivatives of muconic and sorbic acids, which are 1,3‐diene mono‐ and dicarboxylic acid derivatives, to control the stereochemical structures of the polymers. The polymerization reactivity of these monomers in the crystalline state and the stereochemical structure of the polymers produced are discussed based on the concept of crystal engineering, which is a useful method to design and control the reactivity, structure, and properties of organic solids. The reactivity of the topochemical polymerization is determined by the monomer crystal structure, i.e. the monomer molecular arrangement in the crystals. Polymer crystals derived from topochemical polymerization have a high potential as new organic crystalline materials for various applications. Organic intercalation using the polymer crystals prepared from alkylammonium muconates and sorbates is also described.  相似文献   

16.
Polysiloxanes with high molecular weight (Mn > 100 000, Mw/Mn < 2.2) containing various quantity of trifluoroethylene aryl ether groups were prepared by anion ring opening polymerization (AROP) in the presence of promoters including N,N‐dimethylformamide (DMF) and N‐methyl pyrrolidone (NMP). The structures of monomers and polymers were characterized by FTIR and NMR. It was found that the addition of promoter could significantly increase the polymerization rate, decrease the polymerization temperature, and increase the molecular weight of the polymer. When DMF as the promoter, the optimal conditions for polymerization were as follows: The polymerization temperature is 100°C, the amount of catalyst is 2.0%, and the molar ratio of promoter to catalyst is 160:1. The optimal conditions for polymerization using NMP as the promoter were as follows: The polymerization temperature is 75°C, the amount of catalyst is 2.0%, and the molar ratio of promoter to catalyst is 70:1, which indicated that NMP is more effective on AROP than DMF. Thermogravimetric analysis (TGA) showed that the polymer has good heat temperature resistance. Differential scanning calorimetry (DSC) showed that the introduction of NMP in bulk polymerization could improve the randomness of polymer structure, which leads to the disappearance of crystal peak and improve the low temperature resistance of polymer.  相似文献   

17.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

18.

Allyl methacrylate, AMA was polymerized in CCl4 solution by α,α′‐azoisobutyronitrile at 50°C. The thermal degradation mechanism of PAMA was characterized by MS, TGA‐FT‐IR and FT‐IR‐ATR methods. The mass spectrum and TGA thermogram showed two stage degradation. The first stage of degradation was mostly linkage type degradation for the fragmentation of pendant allyl groups at 225–350°C. In the second stage, at 395–515°C, the degradation is random scission and depolymerization types. This was also supported by direct thermal pyrolysis of polymer under vacuum. The degradation fragments of MS and TGA were in agreement. In the degradation process, monomer degraded further to CO, CO2, allyl and ether groups. No strong monomer peak was observed in mass spectrum.  相似文献   

19.
The synthesis of amphiphilic linear‐hyperbranched graft‐copolymers in a grafting‐from approach is reported. The linear polyethylene with terminated hydroxyls, prepared by copolymerization of ethylene and 10‐undecen‐1‐ol, was used as macroinitiator for ring‐opening multibranching polymerization of glycidol by a typical slow monomer addition approach. Successful attachment of the hyperbranched grafts to the linear polyethylene backbone was confirmed by 1H/13C NMR, GPC, and TGA. The degree of polymerization and Mw/Mn of hyperbranched grafts were efficiently controlled by temperature, deprotonation ratio as well as the molar ratio of glycidol/hydroxyl (Nglycidol/NOH). The complicated microstructures caused by unsymmetric glycidol structure were analyzed by DEPT and 2D HSQC spectra, the degree of branching of 0.63–0.66 were calculated, indicating the extent of branch is close to theoretical values. The thermal analysis of linear‐hyperbranched copolymers via TGA and DSC is also presented. To our knowledge, this is the first report of a linear‐hyperbranched graft‐copolymer with a crystalline and nonpolar linear‐polyethylene segment. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2146–2154  相似文献   

20.
Isothiocyanate is a very useful functional group for post‐polymerization modification by the reaction with amine or alcohol. An isothiocyanate monomer, 4‐vinylbenzyl isothiocyanate, was synthesized from 4‐vinylbenzyl chloride without using any harmful reagents such as thiophosgene and CS2. The obtained monomer was successively polymerized by the conventional radical polymerization (AIBN, 1,4‐dioxane, 60 °C) to afford the corresponding polymer. The obtained polymer was characterized by 1H NMR, FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry. In contrast to the isocyanate group, the isothiocyanate group was relatively tolerant to alcohols, and this character enabled us to synthesize a copolymer of 4‐vinyl benzylisothiocyanate and (2‐hydroxyethyl methacrylate). The copolymer is transformed into networked polymer by 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as a promoter of the reaction between isothiocyanate and alcohol to afford thiocarbamate. The formation of networked polymer was characterized by FTIR and TGA. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5215–5220  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号