首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
The supermolecular and fine structures of celluloses obtained on the soda-oxygen digestion of cotton lint under various conditions have been investigated by electron microscopy, IR spectroscopy, and x-radiography. It has been shown that under these conditions there is a weakening of intermolecular hydrogen bonds between the cellulose microfibrils and a loosening of their packing.Tashkent Institute of Chemical Technology. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 371–374, May–June, 1998.  相似文献   

4.
In this work, the silver particle absorption and antibacterial activity of cotton fabric when modified by low temperature plasma were investigated. The modification consisted of plasma pre-functionalization followed by one-step wet treatment with silver nitrate solution. Oxygen and nitrogen were used as the working gases in the system, and the results were compared. The results showed that nitrogen plasma-treated samples can absorb more silver particles than oxygen-treated samples, and thus the antibacterial activity of the samples in this case, which was analyzed by the counting bacteria test, was increased considerably.  相似文献   

5.
The influence of the temperature, pH, and inhibitors on the synthesis of cellulose from cottonplant shoots has been investigated. The maximum activity of glucan synthetase was exhibited at 27°C, pH 8. O. The greatest inhibition of the formation of cellulose was shown by EDTA.A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 62 70 71. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 300–302, March–April, 1995. Original article submitted October 24, 1994.  相似文献   

6.
The O-alkylation of cotton cellulose with monochloroacetic acid has been studied. A change in the sequence of addition of the components to the reaction mixture enables the course of the reaction to be regulated and weakly substituted fibrous carboxymethylcellulose with valuable physicochemical and medicobiological properties to be obtained.Institute of the Chemistry and Physics of Polymers, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 44 26 61. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 436–439, May–June, 1997.  相似文献   

7.
Cotton cellulose is decrystallized by periodate oxidation to essentially zero crystallinity index (CI) at 100% oxidant consumption. The decrease in CI is pseudo zero-order over 60% of the reaction and consistent with a diffusion-controlled mechanism. The attack on regions of high order is indicated to be 100% in the latter phase of oxidation and 13% in the initial phase. Data allow an estimate that approximately 60% of the structural segments of the cotton cellulose under investigation lies in highly ordered arrangements.  相似文献   

8.
An investigation is being undertaken into the influence of flame retardant type on the pyrolytic degradation of cotton (cellulose) fabrics in air over the temperature range 300–100°C. Thermal analysis techniques (TGA and DSC), detailed evolved gas analysis and extent of char formation measurements have all been utilised. The information obtained is used to develop a detailed model for the pyrolytic degradation of cellulose in air and the influence of flame retardants thereon. This paper reports the use of differential scanning calorimetry to further investigate the proposed CELLULOSE → CELLULOSE* transition.  相似文献   

9.
10.
We have previously reported a novel Fourier transform infrared (FTIR) method for evaluating both the accessibility and lateral dimensions of cellulose microfibrils. This method differs from conventional deuteration in that the OH groups in the crystalline region were initially completely deuterated. The samples were then rehydrogenated by immersing them in water at 25 °C, during which only the OD groups on the surface were rehydrogenated. The ratio of OD to OH groups measured for cellulose from various origins was used to estimate microfibril dimensions, which were compared with the data from X-ray diffractometry. The rehydrogenation process was further investigated by immersing the deuterated samples in water at elevated temperatures. The behavior of rehydrogenation under heat treatment was converted to observe the microfibril shape, which was in good agreement with the cross-sectional images obtained by diffraction contrast transmission electron microscopy techniques.  相似文献   

11.
Thermal decomposition of cellulose has been widely studied for the past several years. It has been reported that the source of cellulose and its composition greatly affect its pyrolysis. One of the most widely used analytical tools for the study of cellulose pyrolysis is thermogravimetric (TG) analysis. Several model-fitting methods have been employed to study cellulose pyrolysis kinetics. An alternative to the model-fitting approach is the so-called model-free method developed by Vyazovkin. This isoconversional technique calculates the activation energy as a function of the degree of the conversion. In this article, the pyrolysis of cellulose in cotton fibers compared to microcrystalline cellulose (Avicel, PH 105) was investigated. TG curves were acquired as a function of the heating rates (4, 5, 8, 10, and 16 °C min?1) and the model-free method was used to analyze the data. Activation energies of cotton fibers and Avicel were obtained, and compared to the data reported in the literature. In addition, models for isothermal decomposition were calculated and compared with experimental data at the same temperature.  相似文献   

12.
A simple and versatile method based on cotton cellulose coated with graphene is reported for the fabrication of superhydrophobic and electroconductive textiles. Graphene oxide was deposited on cotton fibers by a dip-pad-dry method followed by reduction with ascorbic acid to yield a fabric with a layer of graphene. The fabric was then reacted with methyltrichlorosilane to form polymethylsiloxane (PMS) nanofilaments on the fibers surface. The surface chemistry and morphology were characterized by UV–visible reflectance spectrophotometry, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy. The water contact angle (CA)/shedding angle (SHA) and resistivity measurements were used for assessing hydrophobicity and conductivity, respectively. The graphene-coated fabric showed hydrophobicity with the CA of 143.2° ± 2.9° and SHA of 41°. The formation of PMS nanofilaments displayed superhydrophobicity with CA of 163° ± 3.4° and SHA of 7°, which indicated the self-cleaning ability. Conductivity of the graphene-coated fabric was confirmed by the electrical resistivity of 91.8 kΩ/sq which increased to 112.5 kΩ/sq after the formation of PMS nanofilaments.  相似文献   

13.
14.
Sakurada's equation and fundamental kinetic laws were applied to the heterogeneous cyanoethylation of cellulose, performed by reacting fiber with liquid acrylonitrile, with sodium hydroxide as the catalyst. The data fit Sakurada's equation better at higher temperatures; deviation occurs at the initial stage, and the rate of reaction falls abruptly at a later stage. The degree of substitution at which the abrupt rate change occurred decreased as the temperature increased from 31 to 60°C. and also as the crystallinity of the fiber decreased. Diluting the reagent with different solvents decreased the rate of reaction and changed its transition points, but did not change the essential nature of the reaction, each segment of which fits Sakurada's equation very well. A uniform distribution of the catalyst (sodium hydroxide) throughout the fiber was attempted, and then the reaction was studied at 50°C. Diffractograms of the samples provided further evidence that the position of the rate change is associated with the change of cellulose (I) crystalline structure. Approximate energy of activation has been calculated, from the specific rate constants, between 31 and 40°C. as 10.6 kcal. and between 45 and 50°C. as 16.7 kcal. At other temperatures the determination was handicapped, due to temperature dependence of the order of reaction. An empirical relation between the constants of Sakurada's equation and the reaction temperature has been sought and correlated with the Arrhenius equation. Energies of activation, determined from this relationship, have been found to be very close to the above values. The change of order of reaction with temperature suggests that the reaction is affected by diffusion and the mechanism is interpreted as a diffusion-controlled reaction where hydrogen bonds play a significant role in diffusion.  相似文献   

15.
Complex dielectric constants were measured at frequencies of 0.1–10,000 kc/s over the temperature range of 0–60°C in medicated cotton cellulose and viscose. In these fibers evidence is found for a new secondary relaxation process within the frequency region of 0.1–1 kc/s. The significance of the results is discussed.  相似文献   

16.
Data in the literature indicate that the measurement of moisture in cheese by near infrared transmittance (NIT) is more accurate than by reflectance (NIR). The accuracy of the NIT measurement (SEP) was calculated for Edam, Gouda, Brie, Colby, and Cheddar. A range of SEP values (0.12-0.35) was obtained using different methods of calibration for different types of samples. There was close agreement between these results, as they related to the precision of the reference method. The calibration validation technique described as Standard Error of Cross Validation (SECV) generated results that compared very closely to the equivalent SEP values for independent sample sets.  相似文献   

17.
18.
The structure of microcrystalline cellulose (MCC) made by mild acid hydrolysis from cotton linter, flax fibres and sulphite or kraft cooked wood pulp was studied and compared with the structure of the starting materials. Crystallinities and the length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. The morphological differences were studied by scanning electron microscopy. A model for the changes in microfibrillar structure between native materials, pulp and MCC samples was proposed. The results indicated that from softwood or hardwood pulp, flax cellulose and cotton linter MCC with very similar nanostructures were obtained with small changes in reaction conditions. The crystallinity of MCC samples was 54–65%. The width and the length of the cellulose crystallites increased when MCC was made. For example, between cotton and cotton MCC the width increased from 7.1 nm to 8.8 nm and the length increased from 17.7 nm to 30.4 nm. However, the longest crystallites were found in native spruce wood (35–36 nm).  相似文献   

19.
20.
Adsorption of carboxymethyl cellulose (CMC) as a method to introduce charged (ionizable) groups onto cellulose cotton fibre surfaces was investigated. The method was based on application of a previously published method used for wood fibres. The amount of adsorbed ionizable groups was determined indirectly by analysis of CMC in solution by the phenol–sulphuric acid method and directly by conductometric titration of the fibres. Results from the two methods correlated well. The molecular weight and purity of the CMC had an influence on its adsorption onto cotton; high molecular weight CMC was preferentially adsorbed. The adsorbed charge correlated linearly with the amount of CMC adsorbed. The total charge of the cotton fibres could be increased by more than 50% by adsorption of CMC. It is expected that this modification procedure can be used in a wide spectrum of practical applications. Lidija Fras Zemljič and Karin Stana-Kleinschek are the members of the European Polysaccharide Network of Excellence (EPNOE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号