首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Hydroxyl-terminated poly(3,4-epoxy-1-butene) (polyEPB) is an interesting and highly useful agent for the acceleration of the photoinitiated cationic ring-opening polymerization of epoxide monomers. Kinetic investigations using real-time infrared spectroscopy have shown that the observed acceleration of the polymerization is due to two independent mechanisms. Crosslinking polymerization of epoxide monomers is accelerated due to an activated monomer mechanism that results in facile chain transfer due to interaction of the terminal hydroxyl groups of polyEPB with the growing oxonium ion chain ends. A second mechanism involving participation of polyEPB in a free radical chain induced decomposition of the onium salt photoinitiator is mainly responsible for the observed acceleration in the rate of polymerization. A large number of polymer-bound carbocationic species are generated by this mechanism that are capable of initiating polymerization of the epoxide monomer.  相似文献   

2.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

3.
Multifunctional alkyl glycidyl ether and oxetane monomers are usually deemed to be poorly reactive and are consequently of limited use for high speed photocuring applications. However, these monomers can be made to undergo exceedingly rapid exothermic photopolymerization when combined with a multifunctional acrylate monomer and a corresponding free radical photoinitiator. Under optimum UV irradiation conditions, these hybrid photopolymerizations take place rapidly and substantially without an induction period. A mechanism was proposed on the basis of thermal acceleration of the cationic ring‐opening polymerizations induced by the fast exothermic free radical acrylate photopolymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3759–3769, 2007  相似文献   

4.
The free radical polymerizations of higher n-alkyl methacrylates were not investigated in detail until now. In this work, the courses of the isothermal free radical bulk polymerization of dodecyl, quatrodecyl and hexadecyl methacrylates were investigated by differential scanning calorimetry. The effects of the polymerization temperature and the alkyl group length in the esters on the monomer conversions during polymerization were studied. It was found that the polymerization rate vs. time curves have two maxima. The free radical polymerizations of above-mentioned monomers proceed with slightly expressed gel effect at the temperatures below 90°C, at initiator concentration 1 mass% in monomer.  相似文献   

5.
This article describes the development of optical pyrometry (OP) as a new analytical technique for the continuous monitoring of the progress of both free‐radical and cationic photopolymerizations. The method is rapid, reproducible, and very easy to implement. A temperature profile of a photopolymerization can be obtained. Preliminary studies have shown that the temperatures of some polymerizing monomers can easily reach temperatures in excess of 250 °C. The effects of the mass and reactivity of the monomer, light intensity, structures, and concentrations of the photoinitiators and monomers as well as the presence or absence of oxygen on various free‐radical and cationic photopolymerizations were examined with this method. Coupling of real‐time infrared spectroscopy with OP provides a convenient method for simultaneously monitoring both the chemical conversion and the temperature of a photopolymerization. This combined technique affords new insights into the effects of temperature‐induced autoacceleration on the course of photopolymerizations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 579–596, 2003  相似文献   

6.
The addition of sulfides has a marked effect on the rates of onium salt induced photoinitiated cationic ring‐opening polymerizations of epoxide monomers. Various behaviors have been observed that depend on the structure of the sulfide. Dialkyl sulfides strongly inhibit the photopolymerizations of these monomers, whereas diaryl sulfides have a retarding effect on the photopolymerizations. Real‐time infrared spectroscopy and optical pyrometry have been employed as analytical methods to probe the kinetic effects of the addition of a variety of sulfides on cationic epoxide ring‐opening photopolymerizations. A mechanism is proposed that involves the formation of sulfonium salts as intermediates. The observations made in this study have important implications for cationic photopolymerizations in general and for photoinitiated cationic ring‐opening polymerizations of epoxides in particular. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2504–2519, 2005  相似文献   

7.
Modified cubic spherosilicate cages of the type [Si8O20]8? were used as rigid, inorganic cores for the synthesis of macroinitiators for thermal and photoinduced free radical and controlled radical polymerizations. Two different routes to these macroinitiators were investigated: the direct modification of the octaanion with chlorosilane‐functionalized initiators and the hydrosilation of SiH‐substituted cages. The latter synthesis of the macroinitiators resulted in more defined reaction products. With these compounds, the polymerizations of styrene and methyl methacrylate were carried out. The free radical polymerizations showed broad polydispersities based on coupling reactions, whereas the copper‐mediated atom transfer radical polymerizations (ATRP) revealed that good polymerization control could be achieved with the prepared initiators. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3858–3872, 2002  相似文献   

8.
The effects of the addition of small amounts of multifunctional monomers that contain functional groups capable of undergoing addition‐fragmentation during radical polymerizations are investigated. Specifically, up to 6 wt % of phenyl trithiocarbonate (TTC)‐containing diacrylate was added to conventional thiol‐multiacrylate photopolymerizations where its addition led to up to 60% reduction in polymerization‐induced shrinkage stress. The higher levels of TTC achieve the lowest stress though they also significantly depress the polymerization rate. Using up to 0.5 wt % phenyl TTC successfully reduces the stress by nearly 20%, demonstrating the effectiveness of the phenyl TTC, while minimizing the influence that the RAFT activity of the TTC unit has on the polymerization rate. When the polymerization rates of the TTC‐containing resins are increased by changing the incident light intensity, complete acrylate conversion is achieved and the stress remains up to 40% lower in the TTC‐containing resins. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1315–1321  相似文献   

9.
The temperature-dependent luminescence of tris (β-diketone) chelates of europium was used for in situ temperature measurements during cationic photopolymerizations of vinyl ethers. These molecular-level luminescent probes provided a real-time, noninvasive method for monitoring temperature during these high-speed polymerizations. Two specific probes, tris (benzoyl-1, 1, 1-trifluoroacetone) europium and tris (1,1,1,5,5,5,-hexafluoroacetylacetone) europium, met several stringent spectral and performance requirements for application in our system. The luminescence from these probes exhibits a reproducible temperature dependence over a wide temperature range and is not sensitive to changes in viscosity. In situ temperature profiles obtained using this novel technique verified the importance of thermal effects during these highly exothermic photopolymerizations. These studies have demonstrated the utility of the tris(β-diketone) europium chelates for characterizing the temperature during high-speed photopolymerizations that cannot be monitored using conventional techniques. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Polydopamine (PDA) is a synthetic model for melanin and has a wide range of opto-electronic properties that underpin its utility in applied and biological settings, from broadband light absorbance to possessing stable free radical species. Here, we show that PDA free radicals are photo-responsive under visible light irradiation, enabling PDA to serve as a photo-redox catalyst. Steady-state and transient electron spin resonance spectroscopy reveals a reversible amplification in semiquinone radical population within PDA under visible light. This photo-response modifies the redox potential of PDA and supports sensitisation of exogenous species via photoinduced electron transfer (PET). We demonstrate the utility of this discovery by employing PDA nanoparticles to photosensitise a common diaryliodonium photoinitiator and initiate free-radical polymerisation (FRP) of vinylic monomers. In situ 1H nuclear magnetic resonance spectroscopy reveals an interplay between PDA-driven photosensitising and radical quenching during FRP under blue, green, and red light. This work provides crucial insights into the photoactive free radical properties of melanin-like materials and reveals a promising new application for polydopamine as a photosensitiser.  相似文献   

11.
A trivalent iron chloride (FeCl3) catalyst induced both living cationic and radical polymerizations of various monomers in the presence of an appropriate additive or ligand to yield polymers with controlled molecular weights and narrow molecular-weight distributions. The in-situ mechanistic transformation from a living cationic to a radical growing species during the styrene polymerization was achieved in a FeCl3-based system with the simple addition of phosphine followed by an elevation of the reaction temperature. The growing cationic species was effectively converted into the radical species to produce a series of block copolymers that consist of styrene and various acrylic monomers.  相似文献   

12.
Using γ-radiation as initiation source at ambient temperatures (i.e. T≈20 °C) for reversible addition-fragmentation chain transfer (RAFT) polymerizations allows for the generation of narrowly distributed polymeric material with living characteristics. It is shown that the living characteristics effected by RAFT agent mediated bulk polymerizations using γ-irradiation are associated with a RAFT mechanism rather than with reversible termination processes. Furthermore, γ-radiation as initiation source for an appropriate RAFT agent/monomer system allows for effective radical storage and the generation of long-lived reaction intermediates at ambient temperatures.The current overview further demonstrates how the RAFT process together with γ-radiation as source of initiation can be employed to graft various monomers onto polypropylene surfaces in a controlled manner.  相似文献   

13.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   

14.
Fluoropolymers are used in many technologically demanding applications because of their balance of high-performance properties. A significant impediment to the synthesis of variants of commercially available amorphous fluoropolymers is their general insolubility in most solvents except chlorofluorocarbons (CFCs). The environmental concerns about CFCs can be circumvented by preparing these technologically important materials in supercritical fluids (SCFs). The homogeneous solution homo- and copolymerization of highly fluorinated acrylic, styrenic and olefinic monomers in supercritical carbon dioxide using free radical methods will be discussed [Science, 257 , 945 (1992)]. Detailed decomposition rates and efficiency factors will be presented for azobisisobutyronitrile (AIBN) in supercritical carbon dioxide and will be compared to conventional liquid solvents [Macromolecules, 26 , 2663 (1993)]. Additionally, viscosities of polymer solutions in supercritical CO2 have been measured using a high pressure, falling cylinder viscometer. The results show that the polymer solution viscosities in supercritical CO2 are an order of magnitude lower than with the same polymers in conventional organic solvents. The results from these homogeneous solution polymerization studies has allowed us to also consider heterogeneous polymerizations in a carbon dioxide continuous phase. Conventional emulsion polymerizations of unsaturated monomers are performed in either aqueous or organic dispersion media with addition of surface active agents (surfactants) to stabilize the colloidal dispersion that forms. With free radical initiators that are preferentially soluble in the continuous phase, high rates of polymerization and high molar mass polymers can be obtained simultaneously. Herein we describe an environmentally responsible alternative to aqueous and organic dispersing media for emulsion polymerizations which utilizes supercritical carbon dioxide, in conjunction with molecularly engineered free radical initiators and amphiphilic molecules that are specifically designed to be interfacially active in CO2. Conventional lipophilic monomers, exemplified by methyl methacrylate and styrene, can be polymerized heterogeneously using a fluorinated azo-initiator in supercritical CO2 in the presence of added surfactant to form stable emulsions that result in submicron size particles. Detailed surfactant and initiator syntheses and phase behavior will also be discussed.  相似文献   

15.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers has been carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of the monomer structure on the frontal behavior of these monomers have been examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers display a prolonged induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy is required to induce the further reaction of these species with a consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations have been observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior has been found to be related to their ability to stabilize the secondary oxonium ion intermediates through multiple hydrogen‐bonding effects to the ether groups present in the molecule. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6435–6448, 2006  相似文献   

16.
Diphenylphenacylsulfonium tetrafluoroborate (DPPS+BF4–) salt possessing both phenacyl and sulfonium structural units was synthesized and characterized. DPPS+BF4– absorbs light at relatively higher wavelengths. The direct and sensitized initiation activity of the salt in both cationic and free radical photopolymerizations was investigated and compared with that of its analogue triphenylsulfonium tetrafluoroborate (TPS+BF4–). Differential scanning photocalorimetry and conventional gravimetric studies revealed that DPPS+BF4– showed higher efficiency for direct and sensitized photopolymerizations of most of the monomers investigated. Although, principally both homolytic and/or heterolytic cleavage is possible, theoretical studies suggested that homolytic pathway is more favored for the generation of reactive initiating species. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 451–457  相似文献   

17.
ABSTRACT

Different secondary alcohols were resolved by lipase catalyzed transesterification using 2,3-butanedione monoxime acrylate as acrylating agent. The results showed that the reaction rates were the fastest among reactions reported until now. The effect of solvent on the transesterification rate was studied. The enantiomeric excess (ee) and enantiomeric purity (E value) of all the acrylate monomers were determined. The synthesized optically active acrylate monomers were polymerized by free radical polymerization technique.  相似文献   

18.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Two RAFT agents, suitable for inducing living radical polymerization in water, have been synthesized. Both RAFT agents were shown to be effective over the temperature range 25–70 °C. One RAFT agent was functionalized with a pyridyl disulfide group. RAFT efficacy was demonstrated for the polymerizations of N‐isopropyl acrylamide (NIPAAM) and poly(ethylene oxide)‐acrylate (PEG‐A) in both water and acetonitrile. The kinetic data indicates that the pyridyl disulfide functionality is largely benign in free radical polymerizations, remaining intact for subsequent reaction with thiol groups. This result was confirmed by studying conventional radical polymerizations in the presence of hydroxyethyl pyridyl disulfide. The utility of the pyridyl disulfide functionality at the terminus of the polymers was demonstrated by synthesizing polymer‐BSA conjugates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7207–7224, 2008  相似文献   

20.
A new form of controlled growth free radical polymerization leading to narrow polydispersity polymers and/or block copolymers is described. The process is based on the polymerization of monomers in the presence of macromonomers of general structure CH2=C(Z)CH2(A)n [(A)n= radical leaving group, Z = activating group] and displays many of the characteristics of living polymerizations. The process is most suited to methacrylic monomers but with the appropriate choice of reaction conditions (high temperatures and/or low conversions) it can also be applied to acrylic and styrenic monomers. The macromonomers are conveniently prepared by catalytic chain transfer to alkyl cobalt(III) complexes or by addition-fragmentation chain transfer. The factors which determine the efficiency of cobalt complexes for molecular weight reduction in free radical emulsion and solution polymerization of methyl methacrylate are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号