首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
本文采用一锅法合成了四芳基吡咯并[3,2-b]吡咯有机空穴输运材料(D41D42D43D44),制备出无掺杂的倒置型平面钙钛矿太阳电池. 材料D41的芳环上含有甲基,具有供体-π-给体-π-供体结构;而D42D43D44具有受体-π-给体-π-受体结构,其中,芳环上分别含有氰基、氟和三氟甲基. 研究表明,芳环上取代基对其分子表面电荷分布和空穴输运层薄膜形貌有显著影响,钙钛矿晶体颗粒的大小与空穴输运材料分子结构有关,含有氰基的材料D42最有利于形成较大的钙钛矿晶粒,这主要是由于吡咯并[3,2-b]吡咯结构具有丰富的电子性质的缘故. D42制备的倒置型平面钙钛矿太阳电池光电转换效率为17.3%,在黑暗条件下22天后,仍保留了初始效率的55%. 吡咯并[3,2-b]吡咯结构具有良好的给电子特性,可作为高效钙钛矿薄膜的空穴传输材料.  相似文献   

2.
提出了铁基纳米晶合金介观阻抗率的物理概念,用Maxwell方程组求得其计算公式ρ=-μ{A}/{t}/Δ×H,该式表明铁基纳米晶合金的介观阻抗率与材料内部的介观磁场强度H、介观磁矢势A和介观磁导率μ有关,磁矢势A是由介观结构引起的量子力学效应,是由合金的微观结构决定的.这个理论很好地解释了铁基纳米晶粉末、粉芯  相似文献   

3.
利用CBS-QB3理论计算方法研究了异戊二烯的可能解离通道.获得了主要碎片离子C5H7+,C5H5+,C4H5+,C3H6+,C3H5+,C3H4+,C3H3+的C2H3+的结构以及这些解离通道的解离能,并给出了相应的过渡态和中间体的结构和位垒.得到的异戊二烯电离势及主要碎片离子的出现势均与实验值符合的较好.最后,通过理论和实验结果的对比讨论了各通道的解离机理.  相似文献   

4.
本文通过计算Lπ=0+,2+,三个低激态的单体密度和形状密度取条件极值下的r(R)函数曲线,确定了9Be处于上述三态时的单体结构和内部振动模式.  相似文献   

5.
最近Anst?ter, et al. 发表了对阴离子-π复合物(I-·C6F6)的第一个定量谱学测量[J. Am. Chem. Soc. 141, 6132 (2019)],认为成键作用中相关作用占41%,静电作用占23%,得出相关作用占主导的结论. 本研究表明,该文献的“静电作用”中混入了Pauli排斥作用,后者在数值上抵消了前者的作用. 在复合物I-·C6F6中,发现静电作用是相关作用的两倍多,因而阴离子-π复合物中仍应是静电作用占主导.  相似文献   

6.
本文利用平行超音速射流和光频梳技术观察到9-甲基蒽(9MA)的多普勒的高分辨率和高精度光谱. CH3内部旋转的势能曲线用六重对称正弦函数表示. 之前报道的9MA-d12的势垒(V6)远远低于9MA-h12[M. Baba, et al., J. Phys. Chem. A 113, 2366 (2009)]. 本文对多组分分子轨道法进行从头算方法的理论计算. 氘代取代势垒降低的部分原因是H和D原子核的波函数不同.  相似文献   

7.
利用直流时间切片离子成像技术对OCS分子在紫外波段207 nm的光解产物S(1D2)进行了偏振实验研究. 通过在两种不同的共振增强多光子电离中间态,1F31P1, 以及四种不同的泵浦-探测激光偏振几何构型下探测了光碎片S(1D2)的角动量极化特性. 使用分子坐标系极化模型和实验室坐标系各向异性模型提取和分析出对应产物CO(X1Σ+)的角分布.观测到的总平动能释放谱表明解离过程存在三种解离通道,分别对应于低、中、高平动能解离通道. 低、中平动能通道的来源与光解波长在较长波长下得到的双峰分布来源一致. 高平动能通道是一种新的解离通道,它来自于单重排斥态A(21A'')的直接解离.  相似文献   

8.
运用分子动力学模拟,研究了腺苷酸(激动剂)与A2AAR腺苷受体蛋白的相互作用和配体结合诱导的蛋白动力学变化.识别了与腺苷酸结合力强于0.5 kcal/mol的关键基团:A632.61,I662.64, V843.32, L853.33, T883.36, F1685.29, M1775.38, L2496.51  相似文献   

9.
韩晓琴  肖夏杰  刘玉芳 《物理学报》2012,61(16):163101-163101
采用Gassian09程序包中的多种方法对OH, OCI, HOCI分子的基态结构进行优化计算, 优选出QCISD/6-311G(2df), B3P86/6-311+G(2df)方法分别对OH(X2), OCI(X2)分子进行计算, 得到平衡核间距ROH=0.09696 nm, ROCI=0.1569 nm, 谐振频率ω(OH)=3745.37 cm-1, ω(OCI)=892.046 cm-1, 与实验结果非常符合. 用Murrell-Sorbie势能函数对OH和OCI分子的扫描势能点进行拟合, 其扫描点都与四参数Murrell-Sorbie函数拟合曲线符合得很好.优选出QCISD(T)/D95(df, pd)方法对HOCI分子进行计算, 得到基态为X1A', 键长ROH =0.0966 nm, 键角∠HOCI=102.3°, 谐振频率ω1(a1)=738.69 cm-1, ω2(b2)=1260.25 cm-1, 离解能De=2.24eV. 通过比较发现这些结果与实验值符合得很好,并优于文献报道的结果. 随后计算出了力常数, 在此基础上,推导出HOCI分子的多体展式势能函数.报道了HOCI分子对称伸缩振动势能图中在H+OCI →HOCI反应通道上有一鞍点, H原子需要越过1.74eV的能垒才能生成HOCI的稳定结构, 在Cl+OH→HOCI通道上不存在明显势垒, 容易形成稳定的HOCI分子.  相似文献   

10.
设计了一种六角晶格二维光子晶体耦合腔阵列,平面波展开法计算能带表明,处于禁带中的耦合缺陷腔模的色散曲线在光子晶体平面内所有k矢量方向更加平坦.模拟了横电波沿ΓK方向的透射谱.与光子晶体单缺陷腔相比,耦合腔阵列结构的缺陷腔模透射率提高三个量级以上,而群速度降低一个量级,得到0.007c的结果.该慢波效应在构造微型可调谐光延迟器和低阈值光子晶体激光器等方面具有潜在的应用前景.  相似文献   

11.
12.
《Physics letters. A》2019,383(33):125976
This paper is to derive a mathematical model for neuron by imposing only a principle of symmetry that two modelers must obtain the same model when one models the conductances of ion channels and the other models the channels' resistances. Conductance-voltage characteristics for ion transport channels and protein gating channels are both derived. They are expressed as products of maximal conductances and opening probabilities for both types of channel. It gives an explanation to the role of spontaneous firing of individual channel pores and to the origin of leak current. The model has a better fit to a classical data than the Hodgkin-Huxley model does. It can also be reduced to a 2-dimensional model qualitatively similar to the FitzHugh-Nagumo equation and be expanded to a model of three ion channels capable of spike bursts.  相似文献   

13.
Experiments on single ionic channels have contributed to a large extent to our current view on the function of cell membrane. In these experiments the main observables are the physical quantities: ionic concentration, membrane electrostatic potential and ionic fluxes, all of them presenting large fluctuations. The classical theory of Goldman–Hodking–Katz assumes that an open channel can be well described by a physical pore where ions follow statistical physics. Nevertheless real molecular channels are active pores with open and close dynamical states. By skipping the molecular complexity of real channels, here we present the internal structure and calibration of two active pore models. These models present a minimum set of degrees of freedom, specifically ion positions and gate states, which follow Langevin equations constructed from a unique potential energy functional and by using standard rules of statistical physics. Numerical simulations of both models are implemented and the results show that they have dynamical properties very close to those observed in experiments of Na and K molecular channels. In particular a significant effect of the external ion concentration on gating dynamics is predicted, which is consistent with previous experimental observations. This approach can be extended to other channel types with more specific phenomenology.  相似文献   

14.
We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed k(B)T and is comparable to what is available under simple dilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strongly affect the gating of some channels. Such a phenomenon would be easier to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.  相似文献   

15.
NMR imaging and one- and two-dimensional self-diffusion propagator measurements of the liquid phase in salt water ice are presented. The properties of the network of brine-filled pores are found to depend on the growth conditions of the ice. Two types of samples are compared: (a) shock-frozen ice produced in the probe in situ and (b) ice grown over several hours under controlled conditions. By shock-freezing, an ice structure could be produced which featured streak-like porous channels of diameters of up to 300 μm allowing almost unrestricted self-diffusion along one preferential axis but reduced diffusivities in the remaining directions. In ice grown under controlled conditions, the pore sizes are near the resolution limit of the imaging experiment of typically 50 μm. For this type of samples, strongly non-Gaussian self-diffusion propagators are obtained, indicating restricted self-diffusion on rms scales of 30 μm. Common to all samples was the observation of highly anisotropic self-diffusion. One- and two-dimensional propagators are compared in order to estimate the degree of anisotropy and the size of the restrictions.  相似文献   

16.
本文利用分块量子化学方法,实现了在周期性边界条件下应用二阶微扰(MP2)理论对液态水的从头算分子动力学模拟. 通过采用aug-cc-pVDZ基组,MP2理论可以精确地描述水分子之间的相互作用势能面,因而在描述水的各项理化性质方面,MP2有望提供比密度泛函理论更加精确的结果. 本研究计算了多种水的结构及动力学性质,包括径向分布函数,扩散系数,偶极矩,三个临近氧原子的角度分布,氢键结构,都得到了与实验观测一致的结果. 因此,周期性边界量子分块方法可以作为一种研究水的物质结构的可靠理论方法,并且有望促进水科学领域争议性问题的解决. 同时,该方法具有普适性和可扩展性,为有效应用高精度量子化学从头算方法计算其他凝聚态体系提供了理论框架.  相似文献   

17.
Analytical solutions describing propagation of monochromatic acoustic waves inside long pores of simple geometries and narrow flat slits are obtained with accounting for gas rarefaction effects. It is assumed that molecular nature of gas is important in Knudsen layers near solid boundaries. Outside the Knudsen layers, the continuum approach is used. This model allows for extension of acoustic analysis to regions of low pressures and microscopic cross-sectional sizes of channels. The problem is solved using linearized Navier-Stokes equations with the boundary conditions that resulted from the first-order approximation with respect to small Knudsen number Kn. For slits and pores of circular and square cross sections, the theoretical dependencies of the dynamic density in the low-frequency range are compared with those that resulted from known experimental data on steady-state flows of rarefied gases in uniform channels. Despite the formal restriction Kn < 1 of asymptotic analysis, the theoretical model agrees well with experiments up to Kn approximately 5. It is shown that the molecular phenomena affect acoustic characteristics of micro-channels and pores starting from relatively small Knudsen numbers Kn > 0.01, especially at low frequencies. The obtained results may be used for analyses of acoustic properties of waveguides, perforated panels, micro-channels and pores in wide range of gas pressures as well as for stationary flows of rarefied gases through long uniform pipes etc.  相似文献   

18.
Through computational modeling we predict that small sodium ion channel clusters on small patches of membrane can encode electric signals most efficiently at certain magic cluster sizes. We show that this effect can be traced back to algebraic features of small integers and are universal for channels with a simple gating dynamics. We further explore physiologic conditions under which such effects can occur.  相似文献   

19.
To get information about the gating process of single ion channels it is important to carry out the periodic modulation of a physical parameter affecting the channels while they are recorded by the patch clamp technique. This paper outlines a possible experimental approach in the case that the membrane potential is the modulated parameter.  相似文献   

20.
Using DVB, three new porous copolymers in the form of microspheres were prepared, characterized and used as adsorbents for phenol and its chlorinated derivatives. As the monomers: 4,4′-bis(maleimidodiphenyl)methane (BM), 2,3-bis(2-hydroxy-3-methylacryloyloxy-propoxy)naphthalene (2,3-NAF) and 2,3-epoxypropyl methacrylate (GLY) were used. All the studied materials were synthesized under the same conditions by means of suspension copolymerization. The DVB copolymers were characterized by elemental analysis, FTIR spectroscopy, TG and DSC analyses and N2 sorption. The off-line solid-phase extraction method (SPE) was used to estimate sorption properties of the copolymers. The results show that the newly obtained materials are mesoporous but their shape of pores and chemical structures are different. BM-DVB and GLY-DVB are characterized by slit-shaped pores and wide pore size distribution. 2,3-NAF-DVB also possesses slit pores but distribution of pore size is narrower. Of those studied BM-DVB is the most interesting material. It has good sorption properties and heat resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号