首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star‐shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star‐combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second‐kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star‐combined operator implies frequency‐explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high‐frequency case. The proof of coercivity of the star‐combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Newton‐HSS methods, which are variants of inexact Newton methods different from the Newton–Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive‐definite Jacobian matrices (J. Comp. Math. 2010; 28 :235–260). In that paper, only local convergence was proved. In this paper, we prove a Kantorovich‐type semilocal convergence. Then we introduce Newton‐HSS methods with a backtracking strategy and analyse their global convergence. Finally, these globally convergent Newton‐HSS methods are shown to work well on several typical examples using different forcing terms to stop the inner iterations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
《Quaestiones Mathematicae》2013,36(8):1117-1133
Abstract

Prior to investigating on sequence spaces and their convergence, we study the notion of statistical convergence of difference sequences of fractional order α ∈ ?. As generalizations of previous works, this study includes several special cases under different limiting conditions of α, such as the notion of statistical convergence of difference sequences of zeroth and mth (integer) order. In fact, we study certain new results on statistical convergence via the difference operator Δα and interpret them to those of previous works. Also, by using the convergence of Δα-summable sequences which is stronger than statistical convergence of difference sequences, we apply classical Bernstein operator and a generalized form of Meyer-Konig and Zeller operator to construct an example in support of our result. Also, we study the rates of Δα-statistical convergence of positive linear operators.  相似文献   

4.
The present paper is concerned with the convergence problem of inexact Newton methods. Assuming that the nonlinear operator satisfies the γ-condition, a convergence criterion for inexact Newton methods is established which includes Smale's type convergence criterion. The concept of an approximate zero for inexact Newton methods is proposed in this paper and the criterion for judging an initial point being an approximate zero is established. Consequently, Smale's α-theory is generalized to inexact Newton methods. Furthermore, a numerical example is presented to illustrate the applicability of our main results.  相似文献   

5.
ABSTRACT

In this paper, a projection-type approximation method is introduced for solving a variational inequality problem. The proposed method involves only one projection per iteration and the underline operator is pseudo-monotone and L-Lipschitz-continuous. The strong convergence result of the iterative sequence generated by the proposed method is established, under mild conditions, in real Hilbert spaces. Sound computational experiments comparing our newly proposed method with the existing state of the art on multiple realistic test problems are given.  相似文献   

6.
Summary Under suitable conditions, we prove the convergence of the Bateman method for integral equations defined over bounded domains inR d ,d1. The proof makes use of Hilbert space methods, and requires the integral operator to be non-negative definite. For one-dimensional integral equations over finite intervals, estimated rates of convergence are obtained which depend on the smoothness of the kernel, but are independent of the inhomogeneous term. In particular, for aC kernel andn reasonably spaced Bateman points, the convergence is shown to be faster than any power of 1/n. Numerical calculations support this result.  相似文献   

7.
In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1],the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1‘ is obtained under the assumption of nonsingularity of generalized Jacobian of Φ(x,y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The efficiency of the two methods is tested by numerical experiments.  相似文献   

8.
Abstract

The idea of statistical relative convergence on modular spaces has been introduced by Orhan and Demirci. The notion of σ-statistical convergence was introduced by Mursaleen and Edely and further extended based on a fractional order difference operator by Kadak. The concern of this paper is to define two new summability methods for double sequences by combining the concepts of statistical relative convergence and σ-statistical convergence in modular spaces. Furthermore, we give some inclusion relations involving the newly proposed methods and present an illustrative example to show that our methods are nontrivial generalizations of the existing results in the literature. We also prove a Korovkin-type approximation theorem and estimate the rate of convergence by means of the modulus of continuity. Finally, using the bivariate type of Stancu-Schurer-Kantorovich operators, we display an example such that our approximation results are more powerful than the classical, statistical, and relative modular cases of Korovkin-type approximation theorems.  相似文献   

9.
In this paper, a formulation for an interior-point Newton method of general nonlinear programming problems is presented. The formulation uses the Coleman-Li scaling matrix. The local convergence and the q-quadratic rate of convergence for the method are established under the standard assumptions of the Newton method for general nonlinear programming.  相似文献   

10.
Abstract

In this article, we investigate the strong convergence of the Euler–Maruyama method and stochastic theta method for stochastic differential delay equations with jumps. Under a global Lipschitz condition, we not only prove the strong convergence, but also obtain the rate of convergence. We show strong convergence under a local Lipschitz condition and a linear growth condition. Moreover, it is the first time that we obtain the rate of the strong convergence under a local Lipschitz condition and a linear growth condition, i.e., if the local Lipschitz constants for balls of radius R are supposed to grow not faster than log R.  相似文献   

11.
《代数通讯》2013,41(12):4785-4794
Abstract

Let ω(G) denote the number of orbits on the finite group G under the action of Aut(G). Using the classification of finite simple groups, we prove that for any positive integer n, there is only a finite number of (non-abelian) finite simple groups G satisfying ω(G) ≤ n. Then we classify all finite simple groups G such that ω(G) ≤ 17. The latter result was obtained by computational means, using the computer algebra system GAP.  相似文献   

12.
A splitting method for two monotone operators A and B is an algorithm that attempts to converge to a zero of the sum A + B by solving a sequence of subproblems, each of which involves only the operator A, or only the operator B. Prior algorithms of this type can all in essence be categorized into three main classes, the Douglas/Peaceman-Rachford class, the forward-backward class, and the little-used double-backward class. Through a certain “extended” solution set in a product space, we construct a fundamentally new class of splitting methods for pairs of general maximal monotone operators in Hilbert space. Our algorithms are essentially standard projection methods, using splitting decomposition to construct separators. We prove convergence through Fejér monotonicity techniques, but showing Fejér convergence of a different sequence to a different set than in earlier splitting methods. Our projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators. The new projective splitting class also contains noteworthy preexisting methods either as conventional special cases or excluded boundary cases. Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.  相似文献   

13.
《Optimization》2012,61(1):3-17
Two inexact versions of a Bregman-function-based proximal method for finding a zero of a maximal monotone operator, suggested in [J. Eckstein (1998). Approximate iterations in Bregman-function-based proximal algorithms. Math. Programming, 83, 113–123; P. da Silva, J. Eckstein and C. Humes (2001). Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim., 12, 238–261], are considered. For a wide class of Bregman functions, including the standard entropy kernel and all strongly convex Bregman functions, convergence of these methods is proved under an essentially weaker accuracy condition on the iterates than in the original papers.

Also the error criterion of a logarithmic–quadratic proximal method, developed in [A. Auslender, M. Teboulle and S. Ben-Tiba (1999). A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications, 12, 31–40], is relaxed, and convergence results for the inexact version of the proximal method with entropy-like distance functions are described.

For the methods mentioned, like in [R.T. Rockafellar (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14, 877–898] for the classical proximal point algorithm, only summability of the sequence of error vector norms is required.  相似文献   

14.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

15.
We propose a one-step smoothing Newton method for solving the non-linear complementarity problem with P0-function (P0-NCP) based on the smoothing symmetric perturbed Fisher function(for short, denoted as the SSPF-function). The proposed algorithm has to solve only one linear system of equations and performs only one line search per iteration. Without requiring any strict complementarity assumption at the P0-NCP solution, we show that the proposed algorithm converges globally and superlinearly under mild conditions. Furthermore, the algorithm has local quadratic convergence under suitable conditions. The main feature of our global convergence results is that we do not assume a priori the existence of an accumulation point. Compared to the previous literatures, our algorithm has stronger convergence results under weaker conditions.  相似文献   

16.
We provide a local as well as a semilocal convergence analysis for two-point Newton-like methods in a Banach space setting under very general Lipschitz type conditions. Our equation contains a Fréchet differentiable operator F and another operator G whose differentiability is not assumed. Using more precise majorizing sequences than before we provide sufficient convergence conditions for Newton-like methods to a locally unique solution of equation F(x)+G(x)=0. In the semilocal case we show under weaker conditions that our error estimates on the distances involved are finer and the information on the location of the solution at least as precise as in earlier results. In the local case a larger radius of convergence is obtained. Several numerical examples are provided to show that our results compare favorably with earlier ones. As a special case we show that the famous Newton-Kantorovich hypothesis is weakened under the same hypotheses as the ones contained in the Newton-Kantorovich theorem.  相似文献   

17.
Regularized versions of continuous analogues of Newton's method and modified Newton's method for obtaining approximate solutions to a nonlinear ill-posed operator equation of the form F(u) = f, where F is a monotone operator defined from a Hilbert space H into itself, have been studied in the literature. For such methods, error estimates are available only under Hölder-type source conditions on the solution. In this paper, presenting the background materials systematically, we derive error estimates under a general source condition. For the special case of the regularized modified Newton's method under a Hölder-type source condition, we also carry out error analysis by replacing the monotonicity of F by a weaker assumption. This analysis facilitates inclusion of certain examples of parameter identification problems, which was not possible otherwise. Moreover, an a priori stopping rule is considered when we have a noisy data f δ instead of f. This rule yields not only convergence of the regularized approximations to the exact solution as the noise level δ tends to zero but also provides convergence rates that are optimal under the source conditions considered.  相似文献   

18.
Abstract

In this article, we discuss Jacobi spectral Galerkin and iterated Jacobi spectral Galerkin methods for Volterra-Urysohn integral equations with weakly singular kernels and obtain the convergence results in both the infinity and weighted L2-norm. We show that the order of convergence in iterated Jacobi spectral Galerkin method improves over Jacobi spectral Galerkin method. We obtain the convergence results in two cases when the exact solution is sufficiently smooth and non-smooth. For finding the improved convergence results, we also discuss Jacobi spectral multi-Galerkin and iterated Jacobi spectral multi-Galerkin method and obtain the convergence results in weighted L2-norm. In fact, we prove that the iterated Jacobi spectral multi-Galerkin method improves over iterated Jacobi spectral Galerkin method. We provide numerical results to verify the theoretical results.  相似文献   

19.
In this paper, we consider two versions of the Newton-type method for solving a nonlinear equations with nondifferentiable terms, which uses as iteration matrices, any matrix from B-differential of semismooth terms. Local and global convergence theorems for the generalized Newton and inexact generalized Newton method are proved. Linear convergence of the algorithms is obtained under very mild assumptions. The superlinear convergence holds under some conditions imposed on both terms of equation. Some numerical results indicate that both algorithms works quite well in practice.   相似文献   

20.
Abstract

Quasi-convex optimization is fundamental to the modelling of many practical problems in various fields such as economics, finance and industrial organization. Subgradient methods are practical iterative algorithms for solving large-scale quasi-convex optimization problems. In the present paper, focusing on quasi-convex optimization, we develop an abstract convergence theorem for a class of sequences, which satisfy a general basic inequality, under some suitable assumptions on parameters. The convergence properties in both function values and distances of iterates from the optimal solution set are discussed. The abstract convergence theorem covers relevant results of many types of subgradient methods studied in the literature, for either convex or quasi-convex optimization. Furthermore, we propose a new subgradient method, in which a perturbation of the successive direction is employed at each iteration. As an application of the abstract convergence theorem, we obtain the convergence results of the proposed subgradient method under the assumption of the Hölder condition of order p and by using the constant, diminishing or dynamic stepsize rules, respectively. A preliminary numerical study shows that the proposed method outperforms the standard, stochastic and primal-dual subgradient methods in solving the Cobb–Douglas production efficiency problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号