首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Polymer networks of different cross-linking densities were prepared by copolymerisation of hydroxyethyl acrylate and ethylene glycol dimethacrylate. The average molecular weight between cross-links as well as the polymer chain mobility were characterised by means of dynamic–mechanical spectroscopy. Equilibrium sorption isotherms and the water uptake in immersion in liquid water allowed the determination of the Flory–Huggins interaction parameter between water molecules and polymer chain segments, which decreased with the water activity in the hydrogel and increased with the cross-linking density as a consequence of the hydrophobic character of the cross-linking agent. Dynamic sorption and desorption experiments were used to determine the diffusion coefficient. Received: 11 November 1999 Accepted: 28 July 2000  相似文献   

2.
The extraction of a series of aminopyridines (APs) utilizing chitosan hydrogels in hexane was investigated. The chitosan hydrogel was prepared using glutaraldehyde as a cross-linking agent. Experiments were carried out to determine the maximum extraction efficiency, distribution coefficient, sorption capacity, and adsorption and desorption mechanisms. The efficiency of extraction of aminopyridines attained a maximum value of ca. 100% with the distribution coefficients for the transfer of the aminopyridines from hexane to chitosan hydrogel increasing in the order of ortho-相似文献   

3.
Highly swollen hydrogels made by the polymerization of acrylamide (AAm) with some anionic monomers such as citraconic acid (CITA) and sodium acrylate (SA) were investigated as a function of composition to find materials with swelling and dye sorption properties. Highly swollen AAm/CITA/SA or AAm/SA/CITA hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with CITA and SA as co‐monomers and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. Chemically crosslinked AAm/CITA/SA or AAm/SA/CITA hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as “Nil blue” (Basic Blue 12; BB 12). Equilibrium percentage swelling values of AAm/CITA/SA or AAm/SA/CITA hydrogels were calculated in the range of 1797–22,098%. Some swelling kinetic parameters were found. Diffusion behavior of water was investigated. Water diffusion into the hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, BB 12 into the hydrogels was studied by batch sorption technique at 25°C. AAm/CITA/SA or AAm/SA/CITA hydrogels in the dye solutions showed coloration, whereas AAm hydrogel did not show sorption of any dye from the solution. The sorption capacity of AAm/CITA/SA or AAm/SA/CITA hydrogels was investigated. At the end of the experiments, 21.70–78.91% BB 12 adsorptions were determined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, acrylamide–itaconic acid hydrogels containing different amounts of itaconic acid prepared by irradiating with γ radiation are discussed. They have been used in experiments of swelling, diffusion and bovine serum albumin (BSA) adsorption. Maximum and minimum swellings were observed with water (1520%) and BSA (890%), respectively. Diffusion of water, NaCl and BSA within hydrogels were found to be non-Fickian in character. In the experiments of BSA adsorption, type III adsorption was found. The hydrogel prepared with 60 mg itaconic acid and irradiated at 2.00 kGy was found to be the best adsorption system for BSA. The adsorption capacity of acrylamide–itaconic acid hydrogel was found to exceed that of acrylamide hydrogel by more than 80–100%.  相似文献   

5.
Networks of β-cyclodextrin have been prepared by reaction with acylated poly(ethylene glycol) with a molar mass of 600 g/mol. Samples with different β-cyclodextrin/poly(ethylene glycol) ratios: 1/4, 1/6, 1/8 and 1/10 have been prepared. Both components are bonded by ester groups, resulting in a network that can be degraded by hydrolysis in basic and acidic media. The maximum stability of the hydrogels is reached at pH 4. The hydrogel percentage water content depends on β-cyclodextrin content ranging from 82 to 98, and the swelling data obtained for these hydrogels fit well with a second order kinetics. The sorption behavior of these hydrogels has been tested by employing 1-naphthol as model molecule. The sorption capacity is close to other cyclodextrin networks previously reported and depends on the hydrogel composition and the concentration of 1-naphthol.  相似文献   

6.
Both the amount of water and the number of calcium ions are main factors affecting the dissolution of chitin in calcium chloride dihydrate-saturated methanol (calcium solvent). The higher degree of N-acetylation of the chitin was also indicated by its higher solubility in calcium solvent. The chitin hydrogel was prepared by adding a large excess of water to the chitin solution with vigorous stirring, followed by extensive dialysis against water or by filtration to remove the methanol and calcium ions. The water content of the chitin hydrogel was approximately 94–96% (w/v) and could be controlled by centrifugation. The chitin gel was also prepared by the addition of a large excess of alcohol, such as ethanol and iso-propanol, and these protocols were found to be effective under anhydrous conditions because the alcohols were exchangeable with other organic solvents in solution. The chitin hydrogel was more susceptible to lysozyme than to chitinase, and showed and a poor susceptibility to chitosanase. A α-chitin-type crystalline structure was regenerated from chitin sheets prepared from both α-chitin and β-chitin solutions in calcium solvent, but the β-chitin-type sheet was formed from the β-chitin hydrogel prepared by mechanical agitation in water. The α-chitin hydrogel solidified when thawed after freezing, but the β-chitin hydrogel prepared by mechanical agitation maintained its gel form even after prolonged freezing. Animal studies revealed a low toxicity for the chitin sheet and an acceleration of epidermal cell regeneration.  相似文献   

7.
Polymeric hydrogels are crosslinked polymers which display high sorption capacity in water and water solution. In this work, cellulose based hydrogel was prepared with divinylsulfone as crosslinking agent. Cellulose based hydrogel was synthesized as a mixture of sodium salt of carboxymethylcellulose (CMCNa) and hydroxyethylcellulose (HEC). The effect of chemical composition, temperature and reaction time during crosslinking processes was investigated both the value of equilibrium water uptake and swelling ratio. Infrared spectra of the synthesized polymeric networks were studied to investigate the chemical structure of crosslinking reaction qualitatively. The thermal properties and morphology of the obtained cellulose based hydrogels were observed by means of TGA (thermo-gravimetry analysis) and SEM (scanning electron microscopy), respectively. Crosslinking of CMCNa/HEC polymeric network results in a decrease in thermal stability. Hydrogel with weight ratio of CMCNa/HEC 5 to 1 at reaction temperature of 60 °C gave the highest absorption capacity in distilled water.  相似文献   

8.
Biodegradable hydrogels prepared by gamma-irradiation from microbial poly(amino acid)s have been studied. pH-Sensitive hydrogels were prepared by the gamma-irradiation of poly(gamma-glutamic acid) (PGA) produced by Bacillus subtilis and poly(epsilon-lysine) (PL) produced by Streptomyces albulus in aqueous solutions. When the gamma-irradiation dose was 19 kGy or more, and the concentration of PGA in water was 2 wt.-% or more, transparent hydrogels could be produced. For the 19 kGy dose, the produced hydrogel was very weak, however, the specific water content (wt. of absorbed water/wt. of dry hydrogel) of this PGA hydrogel was approximately 3,500. The specific water content decreased to 200, increasing when the gamma-irradiation dose was over 100 kGy. Under acid conditions or upon the addition of electrolytes, the PGA hydrogels shrunk. The PGA hydrogel was pH-sensitive and the change in the volume of the hydrogel depended on the pH value outside the hydrogel in the swelling medium. This PGA hydrogel was hydrodegradable and biodegradable. A new novel purifier reagent (coagulant), made from the PGA hydrogels, for contaminated turbid water has been found and developed by Japanese companies. A very small amount of this coagulant (only 2 ppm in turbid water) with poly(aluminum chloride) can be used for the purification of turbid water. A PL aqueous solution also can change into a hydrogel by gamma-irradiation. The specific water content of the PL hydrogel ranged from 20 to 160 depending on the preparation conditions. Under acid conditions, the PL hydrogel swelled because of the ionic repulsion of the protonated amino groups in the PL molecules. The rate of enzymatic degradation of the respective PL hydrogels by a neutral protease was much faster than the rate of simple hydrolytic degradation.  相似文献   

9.
The formulation of organic–inorganic polymer composites can be used to enhance selected properties, such as susceptibility to microbial attack, thermal stability, mechanical strength and water sorption capability. Accordingly, a series of alginic acid–silica hydrogel films was prepared for testing as protective coating materials for PTFE osmotic distillation membranes. Unprotected hydrophobic membranes are subject to wet-out when contacted by surface-active agents, such as oils and detergents. Films containing 5, 10, 15 and 20 wt.% silica, with and without the addition of glycerol for plasticisation, moisturisation and silica dispersion, were characterised using scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, mechanical strength measurements, and water-swelling measurements. Composites prepared with glycerol addition had better thermal stability, mechanical strength and water sorption capability than those prepared without glycerol addition. Uncoated membranes and membranes coated with composites prepared with glycerol addition were tested for OD performance and resistance to surface-active agents using pure water, orange oil (limonene)–water mixtures, and sodium dodecylbenzene sulfonate detergent solutions. Uncoated membranes showed immediate hydrophobicity loss in the presence of orange oil and detergent. For coated membranes, no wet-out occurred over the 15 h duration of three consecutive 5 h OD trials using orange oil–water mixtures. In the case of detergent solutions, the coating afforded protection to the membrane for 4–5 h. In a separate trial, no wet-out occurred when the coated side of the membrane was placed in contact with 1.2 wt.% orange oil for 72 h.  相似文献   

10.
快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成及表征;N-异丙基丙烯酰胺;水凝胶;温敏性;快速响应  相似文献   

11.
《Soft Materials》2013,11(2-3):195-212
Abstract

Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1‐vinyl‐2‐ pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma‐rays from 60Co sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range ?10 to +10°C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was referred to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with FVP=0.19 has been estimated to be gH2O/gPolymer=0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve‐fit of the early‐stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5×10?11 m2 s?1 and 4.5×10?11 m2 s?1, depending on the polymer composition, the cross‐link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was ≈24 kJ mol?1. Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.  相似文献   

12.
The sorption and diffusion processes of anionic surfactants with different chain length through polyacrylamide hydrogels with low swelling degree have been studied by electrical conductivity measurements. The multicomponent equilibrium equation has been used to model the sorption isotherms of different anionic surfactant in the hydrogels. Such isotherms show that initial rapid sorption of unimer surfactant into the membranes occurs, suggesting that non-freezing water can be involved in these interactions. In aqueous solution, at concentrations near and above the critical micelle concentration an anti-co-operative region is found. The diffusion coefficients of the anionic surfactants inside the hydrogel matrix show that the mobility of diffusing surfactant entities is dependent on cross-linker concentration and chain length. The Cukier hydrodynamic model and the free volume theory as modified by Peppas and Reinhart were applied to explain the dependence of the diffusion coefficients of surfactant on surfactant concentration inside the hydrogel. The hydrodynamic model was applied with success to the more hydrophilic surfactant, sodium 1-octanesulfonate, showing that the diffusion coefficients, D, increase when the resistance to hydrodynamic medium decreases; when the surfactant chain length increases (sodium dodecyl sulfate and sodium 1-hexadecane sulphonate) the variation of D with the free volume can only be understood considering the sieving effect produced by the surfactant inside gel.  相似文献   

13.

Crosslinked CMC‐N/PAAm hydrogel were prepared using electron beam irradiation. The factors affecting the degree of crosslinking and swelling behavior of the prepared copolymer were determined. As the irradiation dose and/or PAAm concentration increase, the gel content increases. Preparation of super‐porous hydrogel was attained by the addition of ammonium carbonate as a gas‐blowing agent during the irradiation process. The surface morphology and pore structure of such a prepared hydrogel were examined using scanning electron microscopy. The ability of the prepared hydrogel to absorb and retain large amount of water and as simulating urine was measured. The results suggested the possible use of CMC‐Na/PAAm hydrogels in the personal care product industry.  相似文献   

14.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
羧甲基纤维素钠水凝胶的制备及其生物降解性研究   总被引:9,自引:0,他引:9  
用羧甲基纤维素钠(CMC—Na)制得了含水量高达98%的水凝胶,考察了防腐剂、交联剂、无机态氮素、有机态氮素、碳水化合物的加入量以及环境中pH值等因素对生物降解性的影响。结果表明:制备条件不同,水凝胶的生物降解性不同;环境中一定量铵根离子的存在有利于水凝胶的生物降解;在pH=5.2的环境中纤维素酶活性最高,降解程度最大。  相似文献   

16.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

17.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
用环氧氯丙烷作交联剂,制备了一种聚乙烯醇(PVA)水凝胶.用FTIR和GPC方法对其结构作了表征.在干凝胶中逐步加水使其溶胀,通过差示扫描量热(DSC)方法测量溶胀水凝胶中不同状态水的含量变化来研究凝胶的溶胀特性.结果表明,当水进入干凝胶网络后首先与网络链上的亲水基团通过氢键的结合形成非冻结水,非冻结水与干凝胶的比值为0.20.非冻结水饱和之后,额外再加入的水渗入网络空间,同步形成冻结水与自由水两种状态直至达到平衡溶胀为止.  相似文献   

19.
A complex mechanism characterizes the water uptake kinetics in hydrogels, as a consequence of the strong structural changes occurring in the material during the sorption process. Water acts as a plasticizer, reducing the glass transition temperature of the polymer below the sorption temperature and determining a glass transition in the polymer. In this study the changes in the ultrasonic attenuation and velocity in semicrystalline Poly-vinyl-alcohol (PVA) hydrogel films during water sorption are measured by a pulse-echo system. The ultrasonic wave propagation is applied to monitor the position of the swollen/unswollen fronts and to the measurement of velocity and attenuation. The structural changes in PVA hydrogels, monitored by Wide Angle X-ray Diffractometry (WAXD), performed during the sorption process, are correlated with the ultrasonic data.  相似文献   

20.
The hydrophilic multi-walled carbon nanotube(MWCNT)hydrogel was prepared using acrylic acid,acrylamide and hydrophilic MWCNT.The orthogonal experiment was applied to optimize the synthetic conditions.The MWCNT hydrogel was characterized by Fourier transform infrared spectrophotometer(FTIR)and scanning electron microscopy(SEM)analysis.The MWCNT hydrogel was used as the adsorbent to adsorb water-soluble cationic dye.This study evaluated the adsorption performance of hydrogels on four dyes of safranine Ts crystal violet,malachite green and methylene blue in water.The effects of the amount of hydrogel,the size of hydrogel,pH;and the temperature on the adsorption performance were investigated.The adsorption kinetic and adsorption isotherm curves were measured.The experimental results show that the MWCNT hydrogel can be easily separated from water and the adsorption capacity is much greater compared to the hydrogel without MWCNT.The MWCNT hydrogels can be used in wastewater treatment with a great potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号