首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Digitoxigenin ( 3 ) was transformed by a Fusarium spec. to 7β-hydroxydigitoxigenin ( 1 ) 1β, 7β-dihydroxydigitoxigenin ( 4 ) and to the hitherto unknown 7β, 11α-dihydroxydigitoxigenin ( 9 ). 7β-acetoxy-digitoxigenin ( 2 ) was degraded to methyl 3β, 7β-diacetoxy-14-hydroxy-5β, 14β, 17αH-etianate ( 11 ).  相似文献   

2.
This paper reports the two-dimensional nmr spectral assignment and the X-ray structural determination of 2,14-dimethyl-8β-hydroxy-7,10-dioxo-5β,6β-(propano)-6α,8α-(ethanoimino)-trans-perhydroisoquinoline V which was obtained from 7,10-dimethyl-2β-hydroxy-14-oxo-2,3-(methanoiminoethano)-3β,4β-(propano)-3,4,5,6,7,8-hexahydro-2H-pyrano[2,3-c]pyridine IV by isomerization with hydrochloric acid. Both the compounds IV and V afforded the same dimethiodide IV -2MeI, while the configurational isomer 2,14-dimethyl-8aβ-hydroxy-7,10-dioxo-5α,6β-(propano)-6α,8α-(ethanoimino)-trans-perhydroisoquinoline III gave monomethiodide III -Mel. The structures of these methiodides were also confirmed by X-ray analysis.  相似文献   

3.
Coroglaucigenin, which is known to be a 3β, 14β, 19-trihydroxy-5α-card-20: 22-enolid, was transformed into 2α, 3β, 19-triacetoxy-14β-hydroxy-5α-card-20 : 22-enolid. The latter was identical with the known tri-O-acetyl-19-dihydro-calotropagenin. The structure of calotropagenin ( 1 ) is thus established through an independent way.  相似文献   

4.
Tordanone, a Twice Bent Steroid Structure with Ring A/B β-cis(5β)- and Ring B/C α-cis(8α)-Fused The 3β, 14α, 25-trihydroxy-5β, 8α-cholestan-6-one ( = tordanone; 4 ) has been prepared by stereospecific hydrogenation of 3β, 14α, 25-trihydroxy-5β-cholesta-7,22ξ-dien-6-one ( 5 ). This is the first stereospecific synthesis of a B/C cis-fused steroid belonging to the 5β, 8α -cholestane group with a H-atom at positions 5β (A/B cis-fused) and 8α. The resulting twice bent structure shows a particularly strong steric hindrance of the β-face where CH3(18) at the C/D ring junction and Hβ? C(7) of the B ring are very close to each other. Structural features and mechanistic aspects of the hydrogenation are discussed.  相似文献   

5.
20, 21-Aziridine Steroids: Reaction of Derivatives of the Oximes of 5-Pregnen-20-one, 9β, 10α-5-Pregnen-20-one and 9β, 10α-5,7-Pregnadiene-20-one with Lithium Aluminium Hydride, and of 3β-Hydroxy-5-pregnen-20-one Oxime with Grignard Reagents. Reduction of 3β-hydroxy-5-pregnen-20-one oxime ( 2 ) with LiAlH4 in tetrahydrofuran yielded 20α-amino-5-pregnen-3β-ol ( 1 ), 20β-amino-5-pregnen-3β-ol ( 3 ), 20β, 21-imino-5-pregnen-3β-ol ( 6 ) and 20β, 21-imino-5-pregnen-3β-ol ( 9 ). The aziridines 6 and 9 were separated via the acetyl derivatives 7 and 10 . The reaction of 6 and 9 with CS2 gave 5-(3β-hydroxy-5-androsten-17β-yl)-thiazolidine-2-thione ( 8 ). Treatment of the 20-oximes 12 and 15 of the corresponding 9β,10α(retro)-pregnane derivatives with LiAlH4 gave the aziridines 13 and 16 , respectively. Their deamination led to the diene 14 and triene 17 , respectively. Reduction of isobutyl methyl ketone-oxime with LiAlH4 in tetrahydrofuran yielded 2-amino-4-methyl-pentane ( 19 ) as main product, 1, 2-imino-4-methyl-pentane ( 22 ) as second product and the epimeric 2,3-imino-4-methyl-pentanes 20 and 21 as minor products. – 3β-Hydroxy-5-pregnen-20-one oxime ( 2 ) was transformed by methylmagnesium iodide in toluene to 20α, 21-imino-20-methyl-5-pregnen-3β-ol ( 23 ) and 20β, 21-imino-20-methyl-5-pregnen-3β-ol ( 26 ). Acetylation of these aziridines was accompanied by elimination reactions leading to 3β-acetoxy-20-methylidene-21-N-acetylamino-5-pregnene ( 30 ) and 3β-acetoxy-20-methyl-21-N-acetylamino-5,17-pregnadiene ( 32 ). The reaction of oxime 2 with ethylmagnesium bromide in toluene gave 20α, 21-imino-20-ethyl-5-pregnen-3β-ol ( 24 ) and 20α,21-imino-20-ethyl-5-pregnen-3β-ol ( 27 ). Acetylation of 24 and 27 led to 3β-acetoxy-20-ethylidene-21-N-acetylamino-5-pregnene ( 31 ), 3β-acetoxy-20-ethyl-21-N-acetylamino-5,17-pregnadiene 33 and 3β, 20-diacetoxy-20-ethyl-21-N-acetylamino-5-pregnene ( 37 ). With phenylmagnesium bromide in toluene the oxime 2 was transformed to 20β, 21-imino-20-phenyl-5-pregnen-3β-ol ( 25 ) and 20β,21-imino-20-phenyl-5-pregnen-3β-ol ( 28 ). Acetylation of 25 and 28 yielded 3β-acetoxy-20-phenyl-21-N-acetylamino-5, 17-pregnadiene ( 34 ) and 3β,20-diacetoxy-20-phenyl-21-N-acetylamino-5-pregnene ( 39 ). LiAlH4-reduction of 39 gave 3β, 20-dihydroxy-20-phenyl-21-N-ethylamino-5-pregnene ( 41 ). – The 20, 21-aziridines are stable to LiAlH4. Consequently they are no intermediates in the formation of the 20-amino derivatives obtained from the oxime 2 .  相似文献   

6.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

7.
Bufalin ( 1 ) was transformed to 7β-hydroxybufalin ( 2 ) by an aqueous suspension of the mycelium of Absidia orchidis VUILL. (HAGEM. ). Incubation of resibuforgenin ( 9 ) under the same conditions yielded 12α-hydroxyresibufogenin ( 7 ) and, under changed conditions, another monohydroxylated derivative which possesses most likely the structure of 7β-hydroxyresibufogenin ( 10 ). The corresponding cardenolide 3-O-acetyl-14β, 15β-epoxy-14-anhydro-digitoxigenin ( 17 ) gave both the 7β- and the 12α-monohydroxylated derivatives 18 and 22 and another monohydroxylated product 21 of unknown structure. All microbial transformation products are new.  相似文献   

8.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

9.
The title compound, alternatively called 24‐nor‐5β‐chol‐22‐ene‐3β,7α,12α‐triyl triformate, C26H38O6, has a cis junction between two of the six‐membered rings. All three of the six‐membered rings have chair conformations that are slightly flattened and the five‐membered ring has a 13β,14α‐half‐chair conformation. The 3β, 7α and 12α ring substituents are axial and the 17β group is equatorial. The 3β‐formyl­oxy group is involved in one weak intermol­ecular C—H⋯O bond, which links the mol­ecules into dimers in a head‐to‐head fashion.  相似文献   

10.
β3‐Peptides consisting of six, seven, and ten homologated proteinogenic amino acid residues have been attached to an α‐heptapeptide (all d‐ amino acid residues; 4 ), to a hexaethylene glycol chain (PEGylation; 5c ), and to dipicolinic acid (DPA derivative 6 ), respectively. The conjugation of the β‐peptides with the second component was carried out through the N‐termini in all three cases. According to NMR analysis (CD3OH solutions), the (M)‐314‐helical structure of the β‐peptidic segments was unscathed in all three chimeric compounds (Figs. 2, 4, and 5). The α‐peptidic section of the α/β‐peptide was unstructured, and so was the oligoethylene glycol chain in the PEGylated compound. Thus, neither does the appendage influence the β‐peptidic secondary structure, nor does the latter cause any order in the attached oligomers to be observed by this method of analysis. A similar conclusion may be drawn from CD spectra (Figs. 1, 3, and 5). These results bode well for the development of delivery systems involving β‐peptides.  相似文献   

11.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

12.
2-Alkoxy-4-heteroarylaminomethylene-5(4H)-thiazolones 4 were converted with various nucleophiles into β-heteroarylamino-α,β-dehydro-α-amino acid derivatives 11, 14, 15, 16, 17, 18 , and 19 . Reduction of 4 with sodium borohydride in ethanol saturated with gaseous ammonia afforded the corresponding β-heteroaryl-amino substituted alanyl amides 20 . Thiazoledione derivative 7a was transformed with sodium methoxide in methanol into 1-(4,6-dimethylpyrimidinyl-2)-4-mercaptocarbonylimidazol-2(3H)-one ( 8a ).  相似文献   

13.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

14.
Hydrazoic-sulfuric acid mixture converted cis-α-phenyl-β-benzoylchalcone (trans-dibenzoylstilbene, 4 ) into 2,3-diphenyl-4-benzoylquinoline ( 5 ) the structure of which was proved by debenzoylation to 2,3-diphenylquinoline. α,β-Diphenyl and cis-α,β-dibromochalcones similarly were converted respectively into 2,3,4-triphenylquinoline ( 19 ) and 2-phenyl-3,4-dibromoquinoline ( 20 ). The structure of 19 was shown by difference from the corresponding isoquinoline 21 (synthesized). Smith's mechanism for the analogous conversion of o-phenylbenzophenone into 9-phenylphenanthridine through the 9-fluorenol and the 9-hydroazide with loss of nitrogen and ring expansion, was supported by methyl label experiments using 2-(p-tolyl)benzophenone which gave a 53:47 mixture of 3- and 8-methyl-6-phenylphenanthridines. Applicability of the mechanism to the reactions with disubstituted cis-chalcones was shown by sulfuric acid conversions of two of these into indenol 22 and 2-bromo-3-phenylindenone ( 24 ), respectively. trans-Dibenzoylstilbene underwent resinification in sulfuric acid, giving the quinoline ( 5 ) only when hydrazoic acid was present.  相似文献   

15.
The opening of the pyranone ring in 2H-naphtho[1,2-b]pyran-2-one derivative (1) and 3H-naphtho[2,1-b]-pyran-3-one derivatives 8 and 20 with nucleophiles afforded 3-(naphthyl-1)- and 3-(naphthyl-2)propenoates (substituted β-naphthyl-α,β-dehydro-α-amino acid derivatives) 7, 13, 14, 15, 24 , and 35 .  相似文献   

16.
The reaction of Cα,O-Dilithiooximes 2 and α-chloroketones afforded 5-(hydroxymethyl)-Δ2-soxazolines 4 . α,β-Unsaturated aldehydes and ketones reacted with 2 to give the corresponding acyclic 1,2-addition products 5 . The latter were cyclized with phosphorus pentoxide to 5-vinyl-Δ2-isoxazolines 6 .  相似文献   

17.
The gluco‐ and manno‐tetrahydropyridoimidazole‐2‐acetates and ‐acetic acids 16 and 17 , and 20 and 21 , respectively, were synthesized by condensation, in the presence of HgCl2, of the known thionolactam 26 with the β‐amino ester 25 that was obtained by addition of AcOMe to the imine 22 , followed by debenzylation. The resulting methyl esters 16 and 20 were hydrolyzed to the acetic acids 17 and 21 . The (methoxycarbonyl)‐imidazole 14 and the acid 15 were obtained via the known aldehyde 29 . The imidazoles 14 – 17, 20 , and 21 were tested as inhibitors of the β‐glucosidase from Caldocellum saccharolyticum, the α‐glucosidase from brewer's yeast, the β‐mannosidase from snail, and the α‐mannosidase from Jack beans (Tables 1–3). There is a similar dependence of the Ki values on the nature of the C(2)‐substituent in the gluco‐ and manno‐series. With the exception of 19 , manno‐imidazoles are weaker inhibitors than the gluco‐analogues. The methyl acetates 16 and 20 are 3–4 times weaker than the methyl propionates 5 and 11 , in agreement with the hydrophobic effect. The gluco‐configured (methoxycarbonyl)‐imidazole 14 is 20 times weaker than the methyl acetate 16 , reflecting the reduced basicity of 14 , while the manno‐configured (methoxycarbonyl)‐imidazole 18 is only 1.2 times weaker than the methyl acetate 20 , suggesting a binding interaction of the MeOCO group and the β‐mannosidase. The carboxylic acids 6, 12, 15, 17, 19 , and 21 are weaker inhibitors than the esters, with the propionic acids 6 and 12 being the strongest and the carboxy‐imidazoles 15 and 19 the weakest inhibitors. The manno‐acetate 21 inhibits the β‐mannosidase ca. 8 times less strongly than the propionate 12 , but only 1.5 times more strongly than the carboxylate 19 , suggesting a compensating binding interaction also of the COOH group and the β‐mannosidase. The α/β selectivity for the gluco‐imidazoles ranges between 110 for 15 and 13.4?103 for 6 ; the manno‐imidazoles are less selective. The methyl propionates proved the strongest inhibitors of the α‐glucosidase (IC50 ( 5 )=25 μM ) and the α‐mannosidase (Ki( 11 ) =0.60 μM ).  相似文献   

18.
Synthesis of 4-[3β, 14-Dihydroxy-5β, 14β-androstan-17β-yl]-3-pyrrolin-2-one (hothesimogenin) We describe the synthesis of 4-[3β, 14-Dihydroxy-5β, 14β-androstan-17β-yl]-3-pyrrolin-2-one (24-aza-24-desoxa-digitoxigenin) (7) , starting from 3-O-acetyl-digitoxigenin (1) .  相似文献   

19.
Structural prerequisites for the stability of the 31 helix of β-peptides can be defined from inspection of models (Figs. 1 and 2): lateral non-H-substituents in 2- and 3-position on the 3-amino-acid residues of the helix are allowed, axial ones are forbidden. To be able to test this prediction, we synthesized a series of heptapeptide derivatives Boc-(β-HVal-β-HAla-β-HLeu-Xaa-β-HVal-β-HAla-β-HLeu)-OMe 13–22 (Xaa = α- or β-amino-acid residue) and a β-depsipeptide 25 with a central (S)-3-hydroxybutanoic-acid residue (Xaa = –OCH(Me)CH2C(O)–) (Schemes 1 3). Detailed NMR analysis (DQF-COSY, HSQC, HMBC, ROESY, and TOCSY experiments) in methanol solution of the β-hexapeptide H(-β-HVal-β-HAla-β-HLeu)2-OH ( 1 ) and of the β-heptapeptide H-β-HVal-β-HAla-β-HLeu-(S,S)-β-HAla(αMe)-β-HVal-β-HAla- β-HLeu-OH ( 22 ), with a central (2S,3S)-3-amino-2-methylbutanoic-acid residue, confirm the helical structure of such β-peptides (previously discovered in pyridine solution) (Fig.3 and Tables 1–5). The CD spectra of helical β-peptides, the residues of which were prepared by (retentive) Arndt-Eistert homologation of the (S)- or L -α-amino acids, show a trough at 215 nm. Thus, this characteristic pattern of the CD spectra was taken as an indicator for the presence of a helix in methanol solutions of compounds 13–22 and 25 (including partially and fully deprotected forms) (Figs.4–6). The results fully confirm predicted structural effects: incorporation of a single ‘wrong’ residue ((R)-β-HAla, β-HAib, (R,S)-β-HAla(α Me), or N-Me-β-HAla) in the central position of the β-heptapeptide derivatives A (see 17, 18, 20 , or 21 , resp.) causes the CD minimum to disappear. Also, the β-heptadepsipetide 25 (missing H-bond) and the β-heptapeptide analogs with a single α-amino-acid moiety in the middle ( 13 and 14 ) are not helical, according to this analysis. An interesting case is the heptapeptide 15 with the central achiral, unsubstituted 3-aminopropanoic-acid moiety: helical conformation appears to depend upon the presence or absence of terminal protection and upon the solvent (MeOH vs. MeOH/H2O).  相似文献   

20.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号