首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of acetylene on the γ-radiation-induced polymerization of ethylene were studied from the viewpoint of kinetics. The experiments were carried out under a pressure of 150–400 kg/cm2; the temperature was 30°C; the dose rates were 2.7 × 104 and 1.1 × 105 rad/hr; the acetylene content was 0–2.21%. Both the polymer yield and the molecular weight increased acceleratively with the reaction pressure in the polymerization containing 0.18% acetylene. The yield increased almost proportionally with the dose rate, and the molecular weight was found to be almost independent of the dose rate in the polymerization containing 2.21% acetylene. The polymerization rate and the molecular weight increased with reaction time, but the increment decreased with increasing acetylene content. The degree of increase in the molecular weight also decreased with increasing time. These results were analyzed by using a graphical evaluation method for kinetics, and the effects of acetylene on each elementary step in the polymerization discussed.  相似文献   

2.
Abstract

Poly (vinyl acetate), PVAC, synthesized by bulk polymerization over a range of initiator concentrations ([AIBN] = 10?5 to 4 × 10?3 g-mole/1), temperatures (50°C, 60°C, 70°C, and 80°C) and conversion levels (3 to > 90%) were characterized using low angle laser light scattering (LALLS) photometry to measure Mw of the whole polymers. A number of these samples were characterized using GPC with a differential refractive index (DRI) and LALLS detector to measure the molecular weight distribution (weight fraction versus Mw). Mw for PVAC samples synthesized at suitably low initiator levels at various conversions were found to agree with classical light scattering measurements after Graessley.

An electronic device and a technique which optimizes the sensitivity and the signal-to-noise ratio of the LALLS photometer throughout the molecular weight distribution (MWD) of the GPC chromatogram were devised. These considerably simplify the operation of the LALLS for both offline and online operation with GPC.

Most importantly it was unambiguously shown that the commonly used universal calibration parameter (UCP) with GPC, [n]Mw, is incorrect for polymers with molecules having the same hydrodynamic volume but different molecular weights, i. e., those with only chain branching (LCB), copolymers with compositional drift, and polymer blends. The correct UCP was found to  相似文献   

3.
Phenylacetylene was polymerized by WCl6·Ph4Sn (1:1) in 1,4-dioxane to provide in high yield a polymer whose molecular weight reached 1 × 105. The polymerization also proceeded in other oxygen-containing solvents (ethers, esters, and ketones) but the polymer molecular weights were lower than 1 × 104. Certain hydrocarbon solvents such as cyclohexene, tetralin, and indan also afforded high-molecular-weight polyphenylacetylene [M n = (5–8) × 104], as compared with those (M n ≤ 1.5 × 104) obtained in conventional aromatic hydrocarbons like benzene. A high polymer (M n = 1.6 × 105) was also formed from β-naphthylacetylene in 1,4-dioxane. It was inferred that the active hydrogens of these solvents prevent the formed polymer from being decomposed by a radical mechanism and/or modify the nature of active species.  相似文献   

4.
The reaction between C2H5 and O2 at 295 K has been studied with a flow reactor sampled by a mass spectrometer. With helium as the carrier gas the rate coefficient was found to increase from (1.2 ± 0.3) × 10?12 to (3.6 ± 0.9) × 10?12 cm3/s as [He] was increased from 2 × 1016 to 3.4 × 1017 cm?3. The importance of has been determined from a knowledge of the initial C2H5 concentration together with a measurement of the C2H4 produced in reaction (5). F, the fraction of the C2H5 radicals removed by path (5), was found to decrease from 0.15 to 0.06 as [He] increased from 2 × 1016 to 3.4 × 1017 cm?3. The rate coefficient for reaction (5) was found to be independent of [He] and to have a value of (2.1 ± 0.5) × 10?13 cm3/s. The variation in F reflects the fact that k1b increases as [He] increases. These observations are taken as evidence for a direct mechanism for C2H4 production and a collision-stabilized route for C2H5O2 formation. Calculations indicate that the high-pressure limit for reaction (1b) is ~4.4 × 10?12 cm3/s and that in the polluted troposphere the branching ratio for reactions (1b) and (5) will be ~l20.  相似文献   

5.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

6.
Novel fluorinated polymer synthesis with anionic polyaddition by double Michael addition reaction of 2‐trifluoromethylacrylate derivatives with ethyl cyanoacetate (ECA) was proposed. Diaddition product of ECA with phenyl 2‐trifluoromethylacrylate was yielded in high yield by the catalysis of sodium ethoxide in tetrahydrofuran at 60 °C. Sodium hydroxide catalyzed double Michael addition reaction also produced diaddition product in high yield. Novel anionic polyaddition of 1,4‐phenylene bis(2‐trifluoromethylacrylate) [CH2?C(CF3)COOC6H4OCOC(CF3)?CH2] (PBFA) with ECA afforded the polymer of 1.2 × 104 as the highest molecular weight. The isolated polymer gave the polymer of 2.8 × 104 as a molecular weight by the reaction of the isolated polymer with PBFA in the presence of sodium ethoxide; which proved that the polymer end groups were mainly ECA moieties. The reaction mechanism that the proton abstraction from ECA followed by the addition of 2trifluoromethylacrylate was proposed. The reaction of acetylacetone with PBFA was also examined to give the polymer of 7.6 × 103 as the highest molecular weight catalyzed by sodium hydroxide at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5698–5708, 2009  相似文献   

7.
In bulk polymerization and copolymerization of trioxane with ethylene oxide, it has been shown that p-chlorophenyldiazonium hexafluorophosphate is a superior catalyst as compared to boron trifluoride dibutyl etherate (BF3 · Bu2O). Polymers and copolymers of significantly higher molecular weight have been obtained. The higher molecular weight has been attributed primarily to less inherent chain transfer during propagation, which in turn can be attributed to the superior gegenion PF6?. The polymerization proceeds via a clear period followed by sudden solidification. Faster polymerization and higher molecular weight polymers have been observed for homopolymerization than for copolymerization. The polymer yield obtained after solidification is determined by both rate of polymerization and rate of crystallization of polymers. These rates, in turn, are dependent on the catalyst concentration. The molecular weight is determined both by polymer yield and extent of inherent chain transfer. In the range of monomer to catalyst mole ration [M]/[C] = (0.5–20) × 104 investigated, it has been found that in the higher range, the polymer yield is independent of the catalyst concentration and the extent of inherent chain transfer is inversely proportional to the half power of catalyst concentration: [M]/[C] = (0.5–8) × 104 for homopolymerization and (0.5–3) × 104 for copolymerization with 4.2 mole % ethylene oxide. In the lower range, the yield decreases with catalyst concentration and the extent of inherent chain transfer is inversely proportional to higher power of catalyst concentration. The dependence of molecular weight of polymers on catalyst concentration has been shown to be a complex one. The molecular weight goes through a maximum as the catalyst concentration is decreased. The maximum molecular weights have been obtained at [M]/[C] ≈ 8 × 104 for homopolymerization and ~3 × 104 for copolymerization with 4.2 mole % ethylene oxide. Prior to reaching maximum the molecular weight is inversely proportional to the half power of catalyst concentration indicating it is primarily controlled by inherent chain transfer. Upon further decrease of catalyst, molecular weight decreases as a result of both a decrease in polymer yield and an increase in inherent chain transfer. In copolymerization of trioxane and ethylene oxide, it has been ascertained that methylene chloride exhibits a favorable solvating effect. Although higher inherent chain transfer takes place in copolymerization than in homopolymerization, the extent of chain transfer is independent of ethylene oxide concentration. The difference in polymer yield and molecular weight a t different ethylene oxide concentrations is attributed primarily to the difference in kp/kt ratio. It also has been demonstrated that end capping of polymer chains can be accomplished by the use of a chain transfer agent—methylal.  相似文献   

8.
A series of easily accessible and stable Schiff‐base nickel complexes (complex 1 – 4 ) in conjunction with methylaluminoxane (MAO) were employed for the synthesis of relatively high molecular weight β‐pinene polymers at high temperature with high productivity. The ligand structure of the complex had a substantial effect on the polymerization in terms of the productivity and the molecular weight. With complex 4 in the presence of MAO, high molecular weight polymers of β‐pinene (Mn ~ 10,900) were obtained at 40 °C with an extremely high productivity up to 1.25 × 107 g polyβ‐pinene/mol of Ni. 1H NMR analyses showed that the obtained β‐pinene polymer was structurally identical to that formed by conventional cationic Lewis acid initiators. The polymerization was presumably initiated by the nickel cation formed by the reaction of the schiff‐base nickel complex and MAO, while the propagation proceeded in a manner typical for a conventional carbocationic polymerization process. Direct evidence for the carbocationic polymerization was offered by the fact that quenching of the polymerization with methanol at a low monomer conversion resulted in incorporation of a methoxyl end group into the polymer chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3739–3746, 2007  相似文献   

9.
A novel [60]fullerene pearl-necklace polymer, poly(4,4′-carbonylbisphenylene trans-2-[60]fullerenobisacetamide), was synthesized by a direct polycondensation of trans-2-[60]fullerenobisacetic acid with 4,4′-diaminobenzophenone in the presence of large excesses of triphenyl phosphite and pyridine. In the present polymer, [60]fullerene pearls and diamine linkers were attached to each other by methano-carbonyl connectors. The molecular weight Mw of the polymer was determined to be 4.5 × 104 on the basis of the TOF-MS, and a GPC analysis of the polymer using polystyrene standards showed a weight-average molecular weight of 5.3 × 104. The UV-vis spectrum of the resultant polymer in N,N-dimethylacetamide (DMAc) exhibited a broad absorption (λmax 310 nm, ε 2.1 × 104 L · mol−1 · cm−1), tailing to longer wavelengths, and a fluorenscence peak centered at 550 nm was observed in DMAc. There was observed a large downfield-shift of the cyclopropane methyne proton in the 1H-NMR spectra from 4.57 ppm of the ethyl ester to 5.78 ppm of the polyamide. These observations indicate that the present polyamide is a high-molecular-weight [60]fullerene pearl-necklace polymer and that the cyclopropane rings are efficient to make the [60]fullerene cages and the diamine components conjugatable. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3632–3637, 1999  相似文献   

10.
The metathesis polymerization of an anthrylacetylene bearing an alkyl ester group, 9‐(10‐hexoxycarbonyl)anthrylacetylene ( 1 ), was conducted with various transition‐metal catalysts. A completely soluble black polymer was obtained from 1 in a good yield when W‐based catalysts were employed. The polymerization at a high monomer concentration (1 M) and a high temperature (80 °C) led to the formation of poly( 1 ) with a weight‐average molecular weight of 297 × 103 in an 80% yield. The use of cocatalysts unexpectedly decreased both the yield and molecular weight of poly( 1 ). Rh‐catalyzed and Mo‐catalyzed polymerizations, however, resulted in poor yields of the polymer. The ultraviolet–visible spectrum of poly( 1 ) showed a significantly redshifted absorption (λmax = 571) with a cutoff at 780 nm, which verified the very high order of conjugation of the main chain. Poly( 1 ) exhibited the largest third‐order nonlinear optical susceptibility [χ(3) (−ω; ω, 0, 0) = − 1.9 × 10−10 esu] among the polymers from the monosubstituted polyacetylenes synthesized so far. The electrical conductivity of poly( 1 ) in an I2‐doped state was 8.77 × 10−4 at 293 K. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4717–4723, 2000  相似文献   

11.
The fluorescence polarization method has been used to study the micro-Brownian motion of a terminal segement of a polymer chain in concentrated solutions. A new apparatus for determining the fluorescence intensity and its polarization degree was designed. By using this apparatus, the rotational relaxation time 〈ρ〉 of the terminal segment of the fluorescent conjugates of polyacrylamide in aqueous polyacrylamide solutions was obtained as a function of polymer concentration from 0 to 65%, molecular weight of the conjugate from 3.5 × 104 to 3 × 105, and temperature from 10 to 30°C. The logarithm of 〈ρ〉 increased approximately linearly with increasing polymer concentration. This increase in 〈ρ〉, amounting to a factor of 20 times, was less marked than that in macroscopic viscosity. At concentrations less than 30%, 〈ρ〉 depended appreciably on the molecular weight of the conjugate.  相似文献   

12.
Various types of soluble crosslinked polymers obtained from the copolymerization of methylmethacrylate (MMA) and p-divinylbenzene (p-DVB) in the presence of a transfer agent (CBr4) have been discussed in relation to the variation of the structure during the reaction time. When [p-DVB]/[MMA] = 1.49 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?4, only linear polymers (primary polymer; M n = 1.0 × 105) with pendant vinyl groups are formed intially. Considerable branched structure is attained in rather large polymers (M n = 2.5 × 105), but the number of pendant double bonds is not enough to reach the gelation. As the concentration of the transfer agent becomes high, the intermolecular crosslinking is depressed, and the formed polymers contain loops and short chains. At [p – DVB]/[MMA] = 7.43 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?3, the shape of polymer with the same M n became compact gradually with increasing reaction time. These results are considered to be useful for the preparation of soluble crosslinked polymer with controlled structure.  相似文献   

13.
The effect of the fullerene C60 branching center on the structure and conformation of star-shaped polystyrenes with different arm lengths at equal concentrations in deuterotoluene (c = 1 g/dL) is studied by the method of small-angle neutron scattering. The analysis of neutron scattering for linear PS precursors and stars (the molecular masses of arms are ~7 × 103 and ~4 × 104) shows that the stars have ~6 arms that form a dense excluded-volume zone around a core inaccessible to other macromolecules. In low-molecular-mass stars (the molecular mass of the arm is ~7 × 103), strengthening of the static rigidity of arms is observed; as a result, the size of arms increases relative to the size of free PS chains in a good solvent. At a greater length of arms (M ~ 4 × 104), their individual properties are weakly pronounced in the correlation spectrum of the arm because of the interpenetration of arms, thereby demonstrating similarity in the structures of stars and their linear analogs. The mechanism controlling the effect of fullerene C60 on the conformations of stars via solvent structuring by fullerene is discussed.  相似文献   

14.
The molecular dimensions of polydipropylsiloxamer were studied by intrinsic viscosity measurements in toluene and in 2-pentanone. The relationships between the molecualr weight and the intrinsic viscosity were found to be: [η]25°C., toluene = 4.35 × 10?4 M0.58; [η]θ(10°C.), toluene = 1.09 × 10?3 M0.5; [η]θ(76°C.), 2-pentanone = 8.71 × 10?4 M0.5. This held reasonably well for molecular weights from 25,000 to 3000,000. The root-mean-square end-to-end length ratio, (r02 /M)1/2 as calculated from the constant K, exceeds the free rotation value by approximately 100%. The disparity is greater than that found with polydimethylsiloxamer, indicating a lower degree of flexibility for the polydipropylsiloxamer. This is largely due to the short range steric interaction between near neighboring units of the chain. Gel permeation chromatography was also employed to demonstrate the lower degree of flexibility for polydipropylsiloxamer as compared with polydimethylsiloxamer.  相似文献   

15.
A series of water‐soluble semirigid thermoresponsive polymers with well‐defined molecular weights based on mesogen‐jacketed liquid crystal polymers (MJLCPs), poly[bis(N‐hydroxyisopropyl pyrrolidone) 2‐vinylterephthalate] (PHIPPVTA) have been synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dynamic light scattering (DLS) revealed that the novel monomer and polymers have thermoresponsive properties with cloud point in the range between 10 and 90 °C. The cloud point was increased by 56.2 °C when the polymer molecular weight increased from 0.47 × 104 g mol?1 to 3.69 × 104 g mol?1. In addition, the cloud point of PHIPPVTA was decreased by 18.8 °C with the increase of polymer concentration from 5 to 10 mg mL?1. A slight increase (0.1–3.5 °C) of cloud point has been observed after knocking off the end‐groups of PHIPPVTA. Moreover, the cloud point of polymer increased with increasing of its molecular weight with or without the trithiocarbonate end‐groups, which showed the opposite trend comparing with other thermoresponsive polymers with flexible backbones. These polymers show a dramatic solvent isotopic effect that the cloud point in D2O was lower than in H2O. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The influence of 2,6-di-tert-butylpyridine (DtBP) on the polymerization of α-methylstyrene (αMeSt) induced by the “H2O”/BC13 initiating system in the -20 to ?60°C range has been studied in detail. Adventitious H2O (“H2O”) is the initiating cationogen and initiation most likely proceeds by a concerted route in the absence of free protons or the acid HBC13 OH Polymerizations are extremely rapid and kinetic termination is absent (conversions are 100%) in the absence of DtBP. In the presence of DtBP, polymerizations are still very fast; however, conversions are reduced. Significantly, conversions increase with decreasing temperatures, which suggests the operational presence of terminative proton entrapment. Molecular weights increase with decreasing temperatures in the presence and absence of DtBP and the slopes of the linear Arrhenius plots (In [Mbar]w versus 1/T) are parallel; the molecular weights obtained in the presence of DtBP are close to a factor of 10 higher than those produced in the absence of this hindered pyridine. The virtual identity of the slopes of Arrhenius plots indicates close similarity between the nature and rate of molecular-weight-determining events in the absence and presence of DtBP, i.e., kp/ktr,m and kp/ktr,G DtBP profoundly affects molecular weight dispersity: [Mbar]w/[Mbar]n = 3.0–4.0 in the absence of DtBP whereas [Mbar]w/[Mbar]n = 1.5 -1.8 in the presence of DtBP. The number w of polymer molecules formed (yield/[Mbar]n) in the absence of DtBP whereas [Mbar]w/[Mbar]n = 1.5–1.8 in presence of DtBP. The number of polymer molecules formed (yield/[Mbar]n) = 1.5–1.8 in the presence of DtBp. The number of polymer molecules formed (yield/[Mbar]n) in the absence of DtBP decreases with decreasing temperature while those formed in the presence of DtBP remain constant. According to Mayo, (1/[Mbar]n versus 1/ [M] plots chain transfer to monomer in the peresence of DtBP is vey low (ktr,m /kp = 6.4 × 10?4 and 2.8 × 10?4 at ?30 and ?50°C) but not zero. Conceivably two kinds of chain transfer to monomer reactions may exist (direct and indirect) and only one (i.e., the indirect one) may be trappable by DtBP. The effect of [DtBP] on the percent converstion and [Mbar]n was investigated: Above a fairly well defined [DtBP], neither conversions nor [Mbar]n's were affected by [DtBP]. With increasing [DtBP] molecular weight dispersions rapidly decrease and [Mbar]w [Mbar]n's seem to level off at ~ 1.5 at relatively high [DtBP]. Changing the polarity of the solvent characteristically affects the mechanism of α MeSt polmerzation in the presence and absence of DtBP results in a strong increase in [Mbar]w/[Mbar]n (from ~ 1.5 to ~ 4.0), in the presence of DtBP [Mbar]w/[Mbar]n remains virtually unchanged at ~1.5.  相似文献   

17.
A new bipolar conjugated polyfluorene copolymer with triphenylamine and cyanophenylfluorene as side chains, poly{[9,9‐di(triphenylamine)fluorene]‐[9,9‐dihexyl‐fluorene]‐[2,7‐bis(4′‐cyanophenyl)‐9,9′‐spirobifluorene]} ( PTHCF ), was synthesized for studying the polymer backbone emission. Its absolute weight‐average molecular weight was determined as 4.85 × 104 by using gel permeation chromatography with a multiangle light scattering detector. In contrast to the electronic absorption spectrum in dilute solution, the absorbance of PTHCF in thin film was slightly blue shifted. By comparison of the solution and thin‐film photoluminescence (PL) spectra, a red shift of Δλ = 8–9 nm was observed in the thin‐film PL spectrum. The HOMO and LUMO energy levels of the resulting polymer were electrochemically estimated as ?5.68 and ?2.80 eV, respectively. Under the electric‐field intensity of 4.8 × 105 V cm?1, the obtained hole and electron mobilities were 2.41 × 10?4 and 1.40 × 10?4 cm2 V?1 s?1, respectively. An electroluminescence device with configuration of ITO/PEDOT:PSS/ PTHCF 70%+PBD30%/CsF/Ca/Al exhibited a deep‐blue emission as a result of excitons formed by the charges migrating along the full‐fluorene main chain. The incorporation of the bipolar side chains into the polymer structure prevented the intermolecular interaction of the fluorene moieties, balance charge injection/transport, and thereby improve the polymer backbone emission. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Summery: A Ziegler-Natta catalyst of MgCl2 (ethoxide type)/TiCl4 has been synthesized. In order to obtain ultra high molecular weight polyethylene (UHMWPE) tri-isobutylaluminum which is less active to chain transfer was used as cocatalyst. Slurry polymerization was carried out for the polymerization of ethylene while, dilute solution viscometry was performed for the viscosity average molecular weight (Mv) measurement. The effect of [Al]/[Ti] molar ratio, temperature, monomer pressure and polymerization time on the Mv and productivity of the catalyst have been investigated. The results showed increasing [Al]/[Ti] ratio in the range of 78–117, decreased the Mv of the obtained polymer from 7.8 × 106 to 3.7 × 106 however, further increase of the ratio, resulted in decreased of by much slower rate up to [Al]/[Ti] = 588. The higher pressure in the range of 1–7 bars showed the higher the Mv of the polymer obtained, while increasing temperature in the range of 50 to 90 °C decreased the Mv from 9.3 × 106 to 3.7 × 106. The Mv rapidly increase with polymerization time in the first 15 minutes of the reaction, this increase was slowly up to the end of the reaction (120 min). Increasing [Al]/[Ti] ratio raised productivity of the catalyst in the range studied. Rising reaction temperature from 50 to 75 °C increased the productivity of the catalyst however, further increase in the temperature up to the 90 °C decreased activity of the catalyst. Monomer pressure in the range 1 to 7 bars yields higher productivity of the catalyst. Also by varying polymerization conditions synthesizing of UHMWPE with Mv in the range of 3 × 106 to 9 × 106 was feasible.  相似文献   

19.
研究了水含量和聚合反应温度Tp 对MeOH BF3体系引发异丁烯 (IB)阳离子聚合反应的转化率、产物的分子量及分子量分布的影响 ,求出在不同水含量条件下的Tp 对聚合物分子量影响的数学方程及相应的聚合度活化能Ep ,以期对体系中存在的微量水加以充分利用 .结果表明 ,[H2 O]和Tp 两者共同影响IB阳离子聚合反应过程及产物的分子参数 .当Tp 由 - 10 0℃升高至 - 5 0℃时 ,聚合转化率先增加到一定值后再减小 ,在- 80℃~ - 70℃范围内出现峰值 .在 [H2 O]较低时 ,Tp 明显影响着聚合产物的分子量及分子量分布 ,Tp 越低 ,分子量越高 ,分子量分布越窄 ;在 [H2 O]较高时 ,Tp 对分子量的影响程度较小 ,说明此时水对聚合反应的影响更为突出 .体系中水含量增大对IB阳离子聚合反应呈现不利作用 ,当 [H2 O]由 1 5× 10 - 3mol L增加至 4 6×10 - 3mol L时 ,Ep 由 - 4 0kJ mol增大至 - 17kJ mol ,说明随着 [H2 O]增大 ,水的负面效应更加明显 ,既促进副反应 ,又阻碍链增长反应 ,增长活化能增大 ,聚合物分子量降低 ,分子量分布变宽 .水的负面作用也随着Tp 升高而变得明显 .  相似文献   

20.
The Ziegler–Natta system Cp*TiMe3/B(C6F5)3 catalyzed the copolymerization of ethylene and 1‐hexene in toluene into materials that were characterized by 1H and 13C{1H} NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. The effects of temperature and ethylene/1‐hexene and olefin/catalyst ratios on catalyst activities and copolymer molecular weights and molecular weight distributions were studied; the ethylene proportions varied from less than 5% to 85% or more. In addition, significant amounts of 1‐hexene were incorporated into the growing polymer chain in a 2,1‐fashion; consequently, conventional 13C NMR analytical methodologies for deducing monomer proportions and dispersions and polymer microstructures, based on a low 1,2‐incorporation of α‐olefin, did not work very well. A soluble (in toluene at ambient temperature) but very high molecular weight (weight‐average molecular weight ∼ 8 × 105, weight‐average molecular weight/number‐average molecular weight = 1.8) rubbery copolymer that formed at −78 °C exhibited a predominantly alternating microstructure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3966–3976, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号