首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(trimethylene‐co‐butylene terephthalate) (PTBT) copolymers were prepared by direct esterification followed by polycondensation. The composition and sequence distribution of the copolymers were investigated by nuclear magnetic resonance (NMR). The results demonstrate that the synthesized PTBT copolymers are block copolymers and the content of poly(butylene terephthalate) (PBT) units incorporated into the copolymers is always less than that in the polymerization feed. The 1,4‐butanediol consumption by a side reaction leads to a relatively lower content of PBT units in the resultant copolymers. At the same time, the PBT and poly(trimethylene terephthalate) (PTT) sequence length distributions in the copolymers are different. The PBT segments favor a longer sequence length than do the PTT segments in their corresponding enriched copolymers. The crystallization rate of the copolymers becomes lower than the homopolymers, especially for PTT‐enriched copolymers. Compared with the PTT segment, the presence of PBT segments in the copolymers seems to accelerate crystallization. A wide‐angle X‐ray diffraction (WAXD) analysis indicates PTT and PBT units do not co‐crystallize. The reduced melting temperatures of the copolymers may be attributed to a smaller lamellar thickness and lateral size due to short sequence lengths.  相似文献   

2.
Blends of two grades of acrylonitrile‐butadiene‐styrene (ABS) with three different compounds of poly (vinyl chloride) (PVC) were prepared via melt processing and their morphology, flammability, and physical and mechanical properties were investigated. SEM results showed that the ABS/PVC blend is a compatible system. Also, it can be inferred from fracture surface images that ABS/PVC blends are tough, even at low temperatures. It was found that properties of these blends significantly depend on blend composition and PVC compound type; however, the ABS types have only a small effect on blend properties. On blending of ABS with a soft PVC compound, impact strength, and melt flow index (MFI) increased, but tensile and flexural strength decreased. In contrast, blending of ABS with a rigid PVC compound improved fire retardancy and some mechanical properties and decreased MFI and impact strength.  相似文献   

3.
In this work, an unusual morphology of a mixture of polyamide‐12 (PA‐12) with a series of poly (styrene‐co‐acrylonitrile) (SAN) was obtained by solution casting and fast solvent evaporation. The prepared film was transparent although it contained many crystals. These crystals apparently prevented phase separation despite the instability of the PA‐12 and SAN mixtures below 180°C. In isothermal experiments, once the crystals were melted, phase separation began and the scattered intensity fit the Cahn–Hilliard theory. When the AN content in the SAN copolymer was less than 5%, the phase separation took place when only part of the crystals were melted at 180°C. However, due to the constraint of unmelted crystals, the growth rate of phase separation at this temperature was much slower.  相似文献   

4.
The structure and properties of a three‐component system, a poly(acrylamide‐co‐acrylic acid)/poly(vinyl pyrrolidone) [P(AM‐co‐AA)/PVP] polymer blend prepared by dispersion polymerization, were studied. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the resulting P(AM‐co‐AA) microspheres with diameters between 200–300 nm were well‐dispersed in the PVP matrix. Fourier transform infrared spectra (FTIR) showed that intermolecular hydrogen bonding interaction occurred between the dispersed phase and the continuous phase. The mechanical properties of P(AM‐co‐AA)/PVP polymer blends were also determined. With different mass ratios of acrylamide to acrylic acid, it was found that the blends had better mechanical properties with increased AA content.  相似文献   

5.
Glycidyl methacylate functionalized acrylonitrile–butadiene–styrene particles (ABS-g-GMA) prepared via an emulsion polymerization method were used to toughen poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends. DMA results showed PBT was partially miscible with PC and the addition of ABS-g-GMA improved the miscibility between PBT and PC. DSC tests further testified that the introduction of ABS-g-GMA improved the miscibility of PBT and PC according to the Tm depression criterion. SEM displayed a very good dispersion of ABS-g-GMA particles in the PBT/PC blends and the dispersed phase size of PC decreased due to the compatibilization effect of ABS-g-GMA. The mechanical properties showed that the addition of 10 wt% ABS-g-GMA was sufficient to induce a super-tough fracture behavior to the PBT/PC blends and a notched impact strength of more than 1000J/m was achieved. The Vu-Khanh test showed that stable crack propagation took place for PBT/PC blends with the addition of ABS-g-GMA and led to ductile failure.  相似文献   

6.
Blends of poly(vinyl chloride) (PVC) and poly(α-methylstyrene-acrylonitrile) (α-MSAN) with variable composition of 0 to 100 wt% were prepared by melt mixing. Properties of binary blends were extensively studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), heat distortion temperature (HDT), mechanical properties, melt flow rate (MFR), and scanning electron microscope (SEM). A single glass transition temperature (Tg ) was observed by DSC and DMTA, indicating miscibility between PVC and α-MSAN. The results of ATR-FTIR indicated that specific strong interactions were not present in the blends and the miscibility was due to interaction between –CN and PVC. With increasing amount of α-MSAN, considerable increase occurred in HDT, flexural strength, and flexural modulus compared with reverse s-shaped decrease in impact strength and elongation at break. Synergism was observed in tensile strength and MFR. No phase separation was observed in SEM photographs, indicating miscibility between PVC and α-MSAN. In addition, morphology of the impact-fractured surfaces, including roughness and non-fused particles, correlated well with the mechanical properties and MFR.  相似文献   

7.
Acrylonitrile‐butadiene‐styrene (ABS)/organically modified montmorillonite nanocomposites were prepared by melt blending in an internal mixer, and their morphology, rheological behaviors and mechanical properties were characterized using X‐ray diffraction (XRD), capillary rheometer and tensile, flexural and impact tests. X‐ray diffraction studies revealed the presence of intercalated structure for the prepared nanocomposites and good dispersion of clay layers at low levels of its loading. From the rheological investigations it was observed that the prepared nanocomposites and their pristine counterpart have shear‐thinning behavior, obeying the power law equation. At low shear rates, the steady shear viscosity and shear stress of the nanocomposites increase with increasing of nanoclay content. However, at high shear rates they behave similar to pure ABS. It was shown that the flow activation energy (E) values increase with increasing of nanoclay content. Mechanical tests showed that the flexural moduli of the nanocomposites increase with increase of nanoclay loading, but the flexural strength and the tensile and impact properties decrease with increase of nanoclay content.  相似文献   

8.
An addition of a small amount of non‐solvent tetrahydrofuran (THF) to good solvent water gave rise to a strong solvent power for poly(N‐vinylpyrrolidone) (PVP). It was found that PVP coils in mixtures of water and THF first swelled as the fraction of THF was increased, and then the coils contracted after a critical composition of the solvent mixture based on the measurement of dilute solution viscosities. It was reached that the power of the mixed solvents was not the simple average of the power of individual components. The influence of the non‐ideal mixing of water and THF on the power of these mixtures for PVP and the dimensions of PVP coils was taken into account. Especially the formation of pseudo‐clathrate hydrate structure with the composition φ THF ≈ 0.44 was found to be an important factor to change the solvation and dimensions of PVP coils. Some other solvent mixtures for PVP and poly(methyl methacrylate) (PMMA) were also found to be non‐ideal mixtures. The viscosities of these solvent mixtures could show positive or negative deviation from the values obtained from the addition rule. It was shown again that the influence of the non‐ideality of these solvent mixtures on the dimensions of polymer coils was great. The action of mixed solvents changed the dimension of polymer coils, not only because of excluded volume effects but also because of the different molecular interactions present in these mixed solvents.  相似文献   

9.
In order to improve the compatibility of polycarbonate (PC) and acrylonitrile– butadiene–styrene (ABS), a new type of reactive compatibilizer, methyl methacrylate graft acrylonitrile–butadiene–styrene (MABS) tetramer, was synthesized. The structure and properties of PC/ABS (70/30) blend with various MABS ratios were studied in terms of their mechanical and morphological properties. The results indicated that with the addition of MABS, the glass transition temperature (Tg) of the PC and ABS phases were closer to each other. Addition of MABS decreased the domain size of the ABS dispersed phase, making the dispersed phase well distributed, and the interfacial cohesiveness was enhanced. Notched impact strength and elongation at break of the PC/ABS (70/30) blend increased remarkably with the addition of MABS, with a small drop in the tensile strength.  相似文献   

10.
Maleic acid-alt-styrene (MAaS) copolymer with number-average molecular weight [Mbar] n = 2500 was used as a compatibilizer in blends of poly(ethylene oxide) (PEO) and poly(styrene) (PS). PEO with weight-average molecular weight [Mbar] w = 105 (PEO100) and two PS samples with [Mbar] w = 9 × 104 and 4 × 105, respectively (PS90 and PS400, respectively) were used. A depression of the melting temperature T m of PEO in blends containing MAaS relative to pure PEO and PEO/PS blends was observed. The melting enthalpy ΔH m for the PEO/PS blends containing MAaS was lower than those of pure PEO and PEO/PS blends without compatibilizer. The crystallization kinetics of PEO and the blends were studied by differential scanning calorimetry (DSC) at different crystallization temperatures T c. Flory-Huggins interaction parameters χ12 for the blends were estimated. Their values are in good agreement with those obtained for similar systems and suggest that the free energy of mixing ΔG mix should be negative. Polarized optical microscopy shows differences in the macroscopic homogeneity of the blends containing compatibilizer that could be attributed to a compatibilization process.  相似文献   

11.
12.
Poly(butyl acrylate)-g-poly(styrene-co-acrylonitrile) terpolymer (PBA-g-SAN) with different core/shell ratios and α-methylstyrene-acrylonitrile (α-MSAN) were mixed via melt blending (25/75, W/W). It was found that the core/shell ratio of PBA-g-SAN played an important role in the toughening of rigid α-MSAN. According to an analysis of the impact strength and the morphologies of the impact fractured surfaces, the optimum core/shell ratio with the highest toughening efficiency was 60/40. Considering the results of dynamic mechanical thermal analysis (DMTA), the blends retained the high glass transition temperature (Tg) of α-MSAN because of the immiscibility between the two components. Moreover, increasing the core/shell ratio did not result in sacrificing the heat distortion temperature of the blends, which was attributed to the almost unchanged high temperature Tg of α-MSAN. The tensile strength, flexural strength, and modulus declined slightly with the increasing core content of PBA-g-SAN, which suggested that the stiffness of the blends decreased with the increasing core/shell ratio. This study showed that 60/40 was the optimum core/shell ratio used for toughening modification; it achieved a good balance between mechanical and heat resistance performance.  相似文献   

13.
Melt solid polycondensation is an approach to increase the molecular weight of poly (L‐lactic acid) (PLLA). For this report, the effect of crystallization time of PLLA prepolymer on the molecular weight of the biomaterial was studied. In this process, PLLA prepolymer with a molecular weight of 18,000 was first prepared by the ordinary melt‐polycondensation process. The prepolymer was crystallized at 105°C for various times, and then heated at 135°C for 15–50 h for further solid state polycondensation (SSP). The differential scanning calorimetry (DSC) and viscosity measurements were used to characterize the crystalline properties and molecular weight of the resulting PLLA polymers, respectively. The results showed that the molecular weight of PLLA reached a maximum value under the condition of a crystallization time of 30 min and SSP of 35 h.  相似文献   

14.
The role of styrene‐ethylene/propylene (SEP) diblock copolymer in controlling morphology development of polypropylene/polystyrene (PP/PS) blends was studied by means of small angle laser scattering (SALS) and scanning electron microscopy (SEM). According to SALS, a certain amount of SEP was located at the phase boundary, forming a relatively thick transition layer penetrating into the homopolymers. The thickness of the transition layer was quantified in terms of Debye–Bueche light scattering theory. For PP/PS (1/99) and PP/PS (20/80) blends, the incorporation of SEP into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as a uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. However, for PP/PS (45/55) blends, the addition of SEP results in a nonmonotonous change in domain size. The morphology fluctuation of the fracture surfaces was analyzed using an integral constant Q based on Debye–Bueche light scattering theories. Variation of Q as a function of the concentration of SEP showed that, due to the penetrating transition layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to a more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of the fracture surfaces appeared.  相似文献   

15.

Studies on the miscibility and intermolecular specific interactions in the blends of two structurally similar poly(hydroxyether ester)s, poly(hydroxyether terephthalate ester) (PHETE), and poly(hydroxyether benzoate) (PHEB) with poly(4‐vinyl pyrrolidone) (PVPy) are reported. In the miscible blends there are intermolecular specific interactions between PHEEs and PVPy. It was found that intercomponent hydrogen‐bonding interactions in PHETE/PVPy blends are much stronger than those in PHEB/PVPy blends. It seems that the higher ratio of hydroxyl to carbonyl groups results in the stronger intermolecular hydrogen bonding interactions. The difference in intermolecular specific interactions between the two miscible systems is interpreted on the basis of the impact of macromolecular structures on intermolecular specific interactions. The structural characteristics of macromolecular chains, such as chain connectivity, accessibility (or screening effect), and rigidity of the macromolecular chains have a profound effect on the intermolecular interactions. These factors constitute steric hindrance and reduce the specific interactions among functional groups. These factors can become dominant in the blends of polymers.  相似文献   

16.
Poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends were prepared by melt blending. The rheology, morphology, melting, and mechanical properties of PTT/PP blends were investigated with and without the addition of polypropylene‐graft‐maleic anhydride (PP‐g‐MAH). The melt viscosity results showed that the fluid behavior of PTT/PP blends exhibited great disparity to that of PTT but similar to that of PP; the dispersed flexible PP phase in the blends served as a “ball bearing effect” under shear stress, which made the fluid resistance markedly reduced; by contrast, the relatively rigid PTT dispersed phase made only a small contribution to the viscosity. With 5 wt.% PP‐g‐MAH addition during melt processing, both the shear viscosity and the non‐Newtonian index of 70/30 PTT/PP blend were increased over that of the corresponding uncompatibilized one, whereas the shear viscosity of the 30/70 PTT/PP melt decreased slightly indicating that a considerable amount of PP‐g‐MAH did not act as compatibilizer but probably served as plasticizer.

With the increasing of the other component, the melting temperature of the PTT phase showed a slight decrease while the melting temperature of the PP phase showed a slight increase. 5 wt.% PP‐g‐MAH addition had little influence on the melting temperatures of the two components. When PP≤20 wt.%, the cold crystallization temperature of the PTT phase (Tcc (PTT‐phase)) showed little change with the composition; however, it shifted to higher temperature when PP≥30 wt.%. The variations of the Tcc (PTT‐phase), with and without PP‐g‐MAH, suggested that, when PTT was a minor component, the excess PP‐g‐MAH which did not act as compatibilizer might serve as a plasticizer that made the PTT's cold crystallization process to be easier. The SEM results indicated that, for the uncompatibilized blends, the interfaces from particles pulling‐out are clear and smooth, while, for compatibilized blends, the reactive products are at the interfaces. The mechanical properties suggested that PP‐g‐MAH did not result in significant improvement of the toughness of the blend, but the tensile strength increased markedly.  相似文献   

17.
Abstract

Fractionation of the rigid polymer, poly(p‐phenylene benzobisthiazole) (PBZT), was carried out in dilute solution in concentrated methane sulfuric acid (MSA) using silica gels as packing material of a column. Several combinations of the average chain length of the fractionating materials and the average pore diameter of the gels were examined to improve fractionation resolution. The gels with average pore diameter near the average chain length resulted in high fractionation resolution. Single crystals of the fractionated and unfractionated PBZTs were observed by transmission electron microscopy (TEM). Both single crystals were fundamentally composed of rod crystals with the chain orienting normal to the rods. The unfractionated PBZT made a cluster of parallel rod crystals, where longer chains penetrated a few rod crystals leaving their chain ends within the crystalline core. On the contrary, with the fractionated polymer, extended‐chain rod‐like crystals were dispersed, isolated from each other. This morphology enables us to estimate the chain length visibly by TEM, for which a few milligrams of the material is enough for the observation.  相似文献   

18.
The phase behavior and phase separation dynamics of a PS/PVME/SAN ternary blend using light scattering under a shear rate range of 0.1~40 s?1 were investigated. The cloud point temperature first increases and then decreases with the increase of shear rates. At higher shear rates, the cloud point temperature again increases. The phase separation behavior in the early and later stages under shear field can be explained by the Cahn–Hilliard theory and the exponential growth law, respectively. The delay time τ d ?, the apparent diffusion coefficient D app, the growth rate R(q), and the exponent term show strong dependence on the difference between the experimental temperature and the cloud point temperature (ΔT), and on the shear rates. Compared with PS/PVME binary blends at lower shear rates, τ d for a PS/PVME/SAN ternary blend is smaller, while at higher shear rates τ d is larger. At higher shear rates, the introduction of the third component SAN to a PS/PVME binary blends slows the phase separation process.  相似文献   

19.
The crystallization behavior of uncompatibilized and reactive compatibilized poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends was investigated. In both blends, PTT and PP crystallization rates were accelerated by the presence of each other, especially at low concentrations. When PP content in the uncompatibilized blends was increased to 50–60 wt%, PTT showed fractionated crystallization; a small PTT crystallization exotherm appeared at ~135°C besides the normal ~175°C exotherm. Above 70 wt% PP, PTT crystallization exotherms disappeared. In contrast, PP in the blends showed crystallization exotherms at 113–121°C for all compositions. When a maleic anhydride‐grafted PP (PP‐g‐MAH) was added as a reactive compatibilizer, the crystallization temperatures (T c ) of PTT and PP shifted significantly to lower temperatures. The shift of PTT's T c was larger than that of the PP, suggesting that addition of the PP‐g‐MAH had a larger effect on PTT's crystallization than on PP due to reaction between maleic anhydride and PTT.

The nonisothermal crystallization kinetics was analyzed by a modified Avrami equation. The results confirmed that PTT's and PP's crystallization was accelerated by the presence of each other and the effect varied with blend compositions. When the PP content increased from 0 to 60 wt%, PTT's Avrami exponent n decreased from 4.35 to 3.01; nucleation changed from a thermal to an athermal mode with three‐dimensional growths. In contrast, when the PTT content increased from 0 to 90 wt% in the blends, changes in PP's n values indicated that nucleation changed from a thermal (0–50 wt% PTT) to athermal (60–70 wt% PTT) mode, and then back to a thermal (80–90 wt% PTT) mode. When PP‐g‐MAH was added as a compatibilizer, the crystallization process shifted considerably to lower temperatures and it took a longer crystallization time to reach a given crystallinity compared to the uncompatibilized blends.  相似文献   

20.
In this work the synthesis and characterization of the nanostructure of polymer blends of polycarbonate (PC) and poly(ethylene terephthalate) (PET) obtained from their inclusion complexes with γ-cyclodextrin are reported. The blends prepared by this method present differences in their miscibility compared with those blends obtained by conventional methods like solution casting, coprecipitation, or melt blending. In order to understand the influence of molecular weight in the inclusion complex process, PCs of Mw = 64,000 and 28,000 g/mol were used. The analysis of the nanostructured blend by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), wide-angle X-ray diffraction (WAXD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA) suggests the existence of specific intermolecular interactions between PC and PET that promote miscibility in this normally immiscible polymer blend. Studies by FTIR confirm that the miscibility found was not due to a transesterification reaction during DSC analysis. There were also differences in the morphology of the blends, observed by optical microscopy, obtaining a more homogeneous phase for blends formed in inclusion complexes. The results obtained strongly suggest an improvement in miscibility of the PC/PET blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号