首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of copper salts, zoledronic acid, and 2,2′-bipyridine/1,10-phenanthroline in aqueous ethanolic solutions afforded four phosphonate oxygen-bridged copper complexes, Cu(bipy)(H4zdn)(HSO4) (1), [Cu2(bipy)2(H2zdn)(H2O)(Cl)]·4H2O (2), [Cu2(phen)2(H2zdn)(H2O)(Cl)]·2.5H2O (3), and [Cu3(bipy)3(H4zdn)(H2zdn)(SO4)]·5H2O (4) (H5zdn = zoledronic acid, bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline). The copper centers of 14 have square pyramidal coordination geometries. The Cu(II) ions are coordinated to bipy/phen, zoledronate, and HSO4?/Cl? forming mononuclear units for 1, dinuclear for 2 and 3, and trinuclear for 4. These building units are further extended into 3-D supramolecular networks via multiple hydrogen bond interactions. Temperature-dependent magnetic properties of 2 and 4 suggest weak antiferromagnetic coupling (J = ?4.53(8) cm?1 for 2, J = ?1.69(4) cm?1 for 4). The antitumor activity of 2 was evaluated against the human lung cancer cell line and indicates effective time- and dose-dependent cytotoxic effects.  相似文献   

2.
A series of LnIII–SrII heterometallic coordination polymers formulated as [Ln2Sr3(pda)6(H2O)18]·nH2O (Ln = Pr-1, n = 14; Nd-2, n = 12; Sm-3, n = 11; Eu-4, n = 11; Gd-5, n = 16; Tb-6, n = 13; Dy-7, n = 13) were synthesized via assembly of Ln(NO3)3·6H2O, SrCl2·6H2O, pyridine-2,6-dicarboxylic acid (H2pda) and imidazole (im) in H2O/C2H5OH solution. Single crystal X-ray diffraction revealed that they are isostructural. All of these complexes possess ladder-shaped 1-D chain structures. The luminescent properties of Sm-3, Eu-4, Gd-5, Tb-6 and Dy-7 have been investigated. The solid-state quantum yields and the lifetimes of Eu-4 and Tb-6 are also studied.  相似文献   

3.
Eight substituted bidentate Schiff base ligands HOC6H4CH=N-R (HL) (HL1: R = 4-ClC6H4, HL2: R = 2-ClC6H4, HL3: R = 4-NO2C6H4, HL4: R = 4-MeC6H4, HL5: R = 2,6-Me2C6H3, HL6: R = 2,46-Me3C6H2, HL7: R = CH2C6H5, and HL8: R = n-Pr) were synthesized by the typical condensation reaction. Interaction of cis-[Ru(bpy)2Cl2]?2H2O (bpy = 2,2′-bipyridine) with one equivalent of HL ligand in the presence of KPF6 afforded the cationic ruthenium(II) complexes of the type [Ru(bpy)2(L)](PF6) (18). The reaction of cis-[Ru(phen)2Cl2]?2H2O (phen = 1,10-phenanthroline) and HL1 under similar condition gave complex [(phen)2Ru(L)](PF6) (1a). Treatment of cis-[Ru(phen)2Cl2]?2H2O with two equivalents of HL in the presence of KPF6 resulted in isolation of the cationic ruthenium(III) complexes of the type [Ru(phen)(L)2](PF6) (9-16). All complexes have been spectroscopically characterized. The structures of 1a?CH2Cl2, 2?½CH2Cl2, 3?CH3CN, 5?½H2O, 6, 12?½HOCH2CH2OH, 13?CH3CN, 15?H2O, and 16 have been determined by single-crystal X-ray diffraction.  相似文献   

4.
Abstract

Two new uranyl coordination compounds, [C9H17N2]3[(UO2)2(CrO4)2Cl2(H2O)2]Cl·5H2O (1) and (C9H17N2)[(UO2)(C2O4)Cl] (2), have been synthesized by adding potassium dichromate (K2Cr2O7) or oxalic acid dihydrate (H2C2O4·2H2O) solution into an aqueous solution of uranyl nitrate and 1-butyl-2,3-dimethylimidazolium chloride [Bmmim]Cl. [Bmmim]Cl provides the charge balance and Cl ions that coordinate with uranyl ions. The fundamental building units of 1 and 2 are UO6Cl pentagonal bipyramidal structures. Compound 1 exhibits a graphene-like structure with a system molar ratio of 1:1 for U:Cr and crystallizes in the orthorhombic space group Pbca, with a = 25.644(3) Å, b = 12.996(14) Å and c = 29.198(4) Å. 16-Membered rings are formed by CrO42? and UO22+ in the crystal structure of 1. Compound 2 crystallizes in monoclinic space group P21/n, with a = 10.759(3) Å, b = 11.395(3) Å, c = 14.149(4) Å, β = 102.962(9)° and shows one-dimensional (1D) serrated chains. Within the crystal structures of 1 and 2, C–H[Bmmim]Cl?O hydrogen bonds are identified. O–Hwater?Cl hydrogen bonds are also detected in the crystal structure for 1.  相似文献   

5.
Assembly of orotic acid (H3Or, 1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinecarboxylic) and Cd(NO3)·6H2O yielded a coordination polymer, [(Cd(Hor)·2.5H2O)2]n (1), which has been characterized by X-ray single-crystal diffraction, TGA, and ?uorescence spectra. Single-crystal X-ray structural analyses reveal that 1 is a hydrogen-bonded binuclear Cd-orotate coordination polymer in which both Cd2+ ions have different coordination environments with identical distorted octahedral geometry. Crystal data for 1: monoclinic, space group P21/n, a = 7.0209(10) Å, b = 13.974(2) Å, c = 17.541(3) Å, β = 98.842(2)°, V = 1700.5(4) Å, Z = 4, R1 = 0.0269, wR2 = 0.0612, θmax = 25.960. The emission spectrum of the Cd-complex recorded with 265 nm excitation wavelength reveals the complex has strong blue luminescence with the peak maximum 420 nm (2.95 eV) as a result of the nπ* and ππ* transitions on the H3Or ligand.  相似文献   

6.
Two lanthanide complexes, (mnH)2[EuIII(egta)]2·6H2O (1) (H4egta = ethyleneglycol-bis-(2aminoethylether)-N,N,N,N′-tetraacetic acid) and (mnH)4[EuIII2(dtpa)2]·6H2O (2) (H5dtpa = diethylenetriamine-N,N,N,N″,N″-pentaacetic acid), have been synthesized and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction reveals that 1 is multinuclear nine-coordinate and crystallizes in the monoclinic crystal system with space group C2/c. The obtained cell dimensions are a = 38.513(3)?Å, b = 13.5877(8)?Å, c = 8.7051(5)?Å, β = 99.6780(10)°, and 4490.6(5)?Å3. Each methylamine (mnH+) cation in 1, through hydrogen bonds, connects three adjacent [EuIII(egta)]? anions. The [EuIII(egta)]? anions connect one another forming a 1-D multinuclear zigzag chain structure along the c-axis. Complex 2 is nine-coordinate binuclear structure with tricapped trigonal prismatic conformation and crystallizing in the monoclinic crystal system, but with space group P21/n. The obtained cell dimensions are a = 9.9132(8)?Å, b = 24.1027(18)?Å, c = 10.7120(10)?Å, β = 109.1220(10)°, and 2418.2(3)?Å3. For 2, there are two kinds of methylamine cations (mnH+) connecting [EuIII2(dtpa)2]4? complex anions and lattice waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure.  相似文献   

7.
Two tetranuclear manganese complexes, [Mn4(L1)6](ClO4)2?2.75H2O (1) [HL1 = 4-methyl-2-((pyridin-2-ylmethylene)amino)phenol] and [Mn4(L2)4(NO3)3(OH)]?pz?3H2O (2) [HL2 = (1H-pyrazol-1-yl)(pyridin-2-yl)methanol, pz = pyrazole], have been synthesized and characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, and magnetic measurements. The structural analysis revealed that the central manganese ion is linked with three apical manganese ions through six phenoxo-bridges creating a Mn4O6 core for 1; 2 has a cubane-like topology with the Mn(II) ions and the deprotonated oxygens from L2 alternatively occupying vertices. The magnetic studies indicated a weak ferromagnetic coupling interaction (J = 0.48 ± 0.087 cm?1, g = 2.00, θ = ?0.78 K) for 1 and a weak antiferromagnetic spin-exchange interaction (J1 = ?0.50 ± 0.075 cm?1, J2 = ?0.13 ± 0.082 cm?1, g = 1.98) between Mn(II) ions for 2. The magnetostructural correlations of the two Mn4 clusters have been discussed tentatively.  相似文献   

8.
Inclusion compounds were formed between the host cyclotriveratrylene, H, (2,3,7,8,12,13-hexamethoxy-5,10-dihydro-15H-tribenzo[a,d,g]cyclononene) and the guests carbon tetrachloride, 1,1,1-trichloroethane, 1,1,1-trichloropropane and 1,1,2-trichloroethane. 1 (H·CCl4) has guest molecules in channels alternating with channels of host molecules. 2 (H·C2H3Cl3·C3H5Cl3) and 3 (H·2C2H3Cl3) exhibit a slightly different packing arrangement with one guest molecule in the host cavity and the rest of the guest molecules in channels. The stability and reactivity of these inclusion compounds were investigated.  相似文献   

9.
Three Zn(II) complexes, [Zn2(bpp)2(FNA)2]·H2O (1), [Zn(bpp)(FNA)]·H2O (2), and Zn2(bpp)2(FNA)2 (3) (bpp = 1,3-bi(4-pyridyl)propane, H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesized and characterized by single-crystal and powder X-ray diffraction methods, IR spectroscopy, TG analyses, elemental analyses, and fluorescent analysis. In 1, the Zn(II) ions are linked by FNA anions and bpp into 2-D layers. The Zn(II) ions in 2 are bridged by FNA anions into chiral chains, which are interlinked by bpp into 3-D metal–organic framework with (65·8) CdS topology. Complex 3 features 1-D zigzag chains, which are interconnected by bpp ligands to give a 3-D framework with (6·74·8)(64·7·8) topology. Complexes 2 and 3 exhibit significant ferroelectric behavior (for 2 remnant polarization Pr = 0.050 μC cm?2, coercive field Ec = 1.13 kV cm?1, saturation of the spontaneous polarization Ps = 0.239 μC cm?2; for 3 Pr = 0.192 μC cm?2, Ec = 4.64 kV cm?1, Ps = 0.298 μC cm?2).  相似文献   

10.
Abstract

Two new oxamate-containing manganese(II) complexes, [{Mn(H2edpba)(H2O)2}2]n (1) and [Mn(H2edpba)(dmso)2]?dmso?CH3COCH3?H2O (2) (H4edpba = N,N′-ethylenediphenylenebis(oxamic acid) and dmso = dimethylsulfoxide), have been synthesized and the structures of 1 and 2 were characterized by single crystal X-ray diffraction. The structure of 1 consists of neutral honeycomb networks in which each manganese(II) is six-coordinate by one H2edpba2? ligand and two carboxylate–oxygens from two other H2edpba2? ligands building the equatorial plane. Each manganese is connected to its nearest neighbor through two carboxylate(monoprotonated oxamate) bridges in an anti-syn conformation. A dmso solution of single crystals of 1 was placed under acetone atmosphere affording 2, whereas putting 2 in equimolar water:ethanol mixture results in 1. The molecular structure of 2 is made up of mononuclear manganese(II) units which are interlinked by weak C–H?π and edge-to-face π-stacking interactions leading to supramolecular chains along the crystallographic b axis. Magnetic measurements reveal the occurrence of an antiferromagnetic coupling between two manganese(II) ions through anti-syn carboxylate bridges for 1 [J = ?1.18 cm?1, the Hamiltonian being defined as H = ?J S1.S2] and very weak intrachain ferromagnetic interactions in 2 [J = + 0.046 cm?1, H = ?JiSi.Si + 1].  相似文献   

11.
In this study, the synthesis, spectroscopic properties and crystal structures of three new supramolecular compounds named [Mn2(bpp)4(H2O)4](AS)4·H2O (1), [Co2(bpp)4(H2O)4](AS)4·H2O (2) and [Zn(bpp)(AS)2] (3), have been described, where bpp is 1,3-bis(4-pyridil)propane and AS is aminosalicylate anion. By analysing the similarities between the X-ray powder diffraction results, it has been observed that compounds 1 and 2 are isomorphous, exhibiting an orthorhombic system with space group Pccn; for compound 3, another orthorhombic system was observed, with space group Aba2, which displays coordination between the Zn2+ metal ion and the aminosalicylate anion; this can be considered the first case in the literature involving the direct coordination to the metal ion. The vibrational spectra of compounds 1 and 2 are very similar. In the Raman spectra, the main bands are observed at ca. 1625 and 1020 cm? 1, referring to the O–C = O and CC/CN stretching modes of AS and bpp ligands, respectively.  相似文献   

12.
Two tetranuclear nickel(II) complexes, [Ni4 (p-BrPhHIDC)4(py)4(H2O)4]·CH3OH (p-BrPhH3IDC = 2-(p-bromophenyl)-1H-imidazole-4,5-dicarboxylic acid) (1) and [Ni4(p-ClPhHIDC)4 (CH3CN)4(H2O)4]·4H2O (p-ClPhH3IDC = 2-(p-chlorophenyl)-1H-imidazole-4,5-dicarboxylic acid, py = pyridine) (2), have been solvothermally synthesised and structurally characterised. Both compounds consist of similar tetranuclear Ni(II) cores, in which the imidazole dicarboxylate ligands adopt the similar coordination mode. The thermal properties of 1 and 2 have been investigated. Also, it is discovered that there exists antiferromagnetic coupling between the Ni(II) ions in 1 and 2; the best fittings to the experimental magnetic susceptibilities gave J = ? 9.89 cm? 1 and g = 2.18 for 1, and J = ? 10.54 cm? 1 and g = 2.14 for 2.  相似文献   

13.
The rates of aqua substitution from [Pt{2-(pyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(H2Qn)], [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(dCH3Qn)], [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]quinoline}(H2O)2](ClO4)2, [Pt(dCF3Qn)], and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF3Py)], with three sulfur donor nucleophiles were studied. The reactions were followed under pseudo-first-order conditions as a function of nucleophile concentration and temperature using a stopped-flow analyzer and UV/visible spectrophotometry. The substitution reactions proceeded sequentially. The second-order rate constants for substituting the aqua ligands in the first substitution step increased in the order Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(H2Qn) < Pt(dCF3Py), while that of the second substitution step was Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(dCF3Py) < Pt(H2Qn). The reactivity trends confirm that the quinoline substructure in the (pyrazolylmethyl)quinoline ligands acts as an apparent donor of electron density toward the metal center rather than being a π-acceptor. Measured pKa values from spectrophotometric acid–base titrations were Pt(H2Qn) (pKa1 = 4.56; pKa2 = 6.32), Pt(dCH3Qn) (pKa1 = 4.88; pKa2 = 6.31), Pt(dCF3Qn) (pKa1 = 4.07; pKa2 = 6.35), and Pt(dCF3Py) (pKa1 = 4.76; pKa2 = 6.27). The activation parameters from the temperature dependence of the second-order rate constants support an associative mechanism of substitution.  相似文献   

14.
Three coordination polymers, {[Co(C10H5N3O5)(H2O)2]·H2O}n (1), {[Mn3(C10H5N3O5)2Cl2(H2O)6]·2H2O}n (2), and {[Cu3(C10H4N3O5)2(H2O)3]·4H2O}n (3), based on a T-shaped tripodal ligand 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine 1-oxide (H3DCImPyO), were synthesized under hydrothermal conditions. The polymers showed diverse coordination modes, being characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray structure analysis. In 1, the HDCImPyO2? generated a 1-D chain by adopting a μ2-kN, O : kN′, O′ coordination mode to bridge two Co(II) ions in two bis-N,O-chelating modes. In 2, the HDCImPyO2? adopted a μ3-kN, O : kO′, O′′ : O′′′ coordination mode to bridge two crystallographically independent Mn(II) ions, forming a 2-D hcb network with {63} topology. In 3, by adopting μ4-kN, O : kO′, O′′ : kN′′, O′′′ : O′′′′ coordination, DCImPyO3? bridged three crystallographically independent Cu(II) ions to form a 3-D framework having the stb topology.  相似文献   

15.
Four new zinc(II) complexes formulated as [Zn(L)2] (1), [Zn(L)2(phen)] (2), [Zn(L)2(bipy)H2O] (3), and [Zn(en)2(H2O)2](L)2(H2O)2 (4), where HL = 4-methyl trans-cinnamic acid, bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and en = ethylenediamine, have been synthesized and characterized by FT-IR and NMR spectroscopy. Single-crystal XRD revealed distorted square-pyramidal structure for 3 and octahedral for 4. The complexes were screened for DNA interaction via viscommetry and UV–visible spectroscopy. The apparent binding constants were calculated to be 1.18 × 104, 1.26 × 105, 4.64 × 104, and 1.89 × 104 for 14, respectively. The binding propensity to salmon sperm DNA was in the order: K2 > K3 > K4 > K1. Furthermore, these complexes demonstrated efficient inhibition of alkaline phosphatase, which was attributed to the binding of zinc(II) to the enzyme’s active site.  相似文献   

16.
Six transition metal coordination compounds with H2mand and different N-donor ligands, [Co(Hmand)2(2,2′-bipy)]·H2O (1), [Ni(Hmand)2(2,2′-bipy)]·H2O (2), [Ni(Hmand)2(bpe)] (3), [Zn(Hmand)2(2,4′-bipy)(H2O)]·2H2O (4), [Zn(Hmand)(bpe)(H2O)]n[(ClO4)]n·nH2O (5), and [Zn(Hmand)(4,4′-bipy)(H2O)]n[(ClO4)]n (6), were synthesized under different conditions (H2mand = (S)-(+)-mandelic acid, bpe = 1,2-di(4-pyridyl)ethane, 4,4′-bipy = 4,4′-bipyridine, 2,4′-bipy = 2,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine). Their structures were determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, infrared spectra, thermogravimetric analysis, powder X-ray diffraction, and circular dichroism. Compounds 1 and 2 are isostructural (0-D structures), which are extended to supramolecular 1-D chains by hydrogen bonding. Compound 3 exhibits 1-D straight chain structures, which are further linked via hydrogen bond interactions to generate a 3-D supramolecular architecture. Compound 4 displays a discrete molecular unit. Neighboring units are further linked by hydrogen bonds and ππ interactions to form a 3-D supramolecular architecture. Compound 5 displays a 2-D undulated network, further extended into a 3-D supramolecular architecture through hydrogen bond interactions. Compound 6 possesses a 2-D sheet structure. Auxiliary ligands and counteranions play an important role in the formation of final frameworks, and the hydrogen-bonding interactions and ππ stacking interactions contributed to the formation of the diverse supramolecular architectures. Compounds 1, 2, 4, 5, and 6 crystallize in chiral space groups, with the circular dichroism spectra exhibiting positive cotton effects. Furthermore, the luminescent properties of 46 have been examined in the solid state at room temperature, and the different crystal structures influence emission spectra significantly.  相似文献   

17.
TAML complex is oxidized by H2O2 or tBuOOH in water at pH < 10 into the corresponding iron(IV) μ-oxo-bridged dimer 2, which oxidizes readily ring-substituted thioanisoles p-XC6H4SMe (X=H, MeO, Me, Cl, CN) into the corresponding sulfoxides with regeneration of 1. The oxidation studied under pseudo-first-order conditions using the stopped-flow technique by monitoring the fading of the 420-nm band of 2 follows hyperbolic kinetics according to the rate law kobs = ab[p-XC6H4SMe]/(1 + b[p-XC6H4SMe]) at pH 8 and 25 °C. Parameters a, b, and ab all decrease for electron-poorer thioanisoles and the Hammett value ρ?~?1 has been found for ab, which can be associated with the second-order rate constants for oxidation of thioanisoles by 2. The kinetics of oxidation of p-NO2C6H4SMe by H2O2 catalyzed by 1 has been studied under steady-state conditions. Covering the concentration of 1 in a 100-fold range has revealed that though first-order kinetics in 1 is observed at low catalyst concentrations (below 10?6 M), there is a significant negative deviation from linearity at [1]?>?10?6 M. The latter was rationalized by the equilibrium between the monomeric and dimeric FeIV species 2 M???M–M (Kd), both being able to oxidize p-NO2C6H4SMe with rate constants km and kd which were found to be (13?±?1)?×?104 and (0.32 ± 0.01)?×?104 M?1 s?1, respectively. The difference in the rate constants is the key for resolving the dilemma of faster catalysis versus slower single-turnover reactivity of TAML activators in water.  相似文献   

18.
Two new doubly methoxido-bridged MnIII dinuclear complexes, [MnIII(mphp)(μ-OCH3)(CH3OH)]2·2CH3OH (1) and ([MnIII(ahbz)(μ-OCH3)(CH3OH)]2·2CH3OH (2), have been synthesized by using the tridentate ligands H2mphp (H2mphp = 2-methyl-6-(pyrimidin-2-yl-hydrazonomethyl)-phenol) and H2ahbz (H2ahbz = N-(2-amino-propyl)-2-hydroxy-benzamide). The complexes have been characterized by single-crystal X-ray diffraction analysis and magnetic measurements. Complexes 1 and 2 have a similar dimeric molecular structure. Two [Mn(L)(CH3OH)]+ moieties (L2? = mphp2? or ahbz2?) are bridged by two μ-OCH3? groups in the axial-equatorial asymmetric manner. The coordination geometry of MnIII is an axially elongated octahedron with two oxygens of a methanol ligand and a methoxido ligand situated at the axial positions. Magnetic measurements indicate that 1 and 2 exhibit antiferromagnetic behavior with the fitting parameter of J = ?1.49(3) cm?1, D = ?1.3(1) cm?1, g = 1.98(1) and zJ′ = ?0.18(4) cm?1 for 1, and J = ?1.6(2) cm?1, D = 4.5(3) cm?1, g = 2.06(1) and zJ′ = 1.4(1) cm?1 for 2 on the basis of the spin Hamiltonian ? = ?2J?Mn1?Mn2.  相似文献   

19.
Four new complexes have been prepared and characterized from reaction of the tetrapodal Schiff base ligand 1,1,1,1-tetrakis[(3-methoxysalicylaldimino)methyl]methane (H4L) with Cu(II), Ni(II) and Cd(II). X-ray diffraction experiments revealed that 1 ([Cu2L·2H2O]·H2O) and 2 ([Cu2L·2CH3OH]·3H2O) are dinuclear complexes, with the same tetragonal pyramidal coordination geometries around their Cu(II) ions. Complex 3 ([Ni2L]·2H2O) is dinuclear with two square planar Ni(II) ions coordinated to two pairs of the pendant branches of H4L. Complex 4 ([Cd3(HL)2]·3H2O) is a linear trinuclear species with three Cd(II) ions, which were intermolecularly coordinated to three pendant branches of two H4L ligands via an uncommon intermolecular phenoxo oxygen face-sharing mode. The in vitro antimicrobial activities of H4L and its complexes were evaluated against four micro-organisms (Colibacillus, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis) using the tube-dilution method. The results revealed that 3 showed good inhibitory activity against the Gram-positive bacteria S. aureus and B. subtilis with MIC values of 62.5 and 31.0 μg mL, respectively.  相似文献   

20.
Four coordination polymers, [CsL1(H2O)2]·H2O (1), [CsL2(H2O)2]·H2O (2), [Rb2(L2)2(H2O)2]·2H2O (3) and [RbL3(H2O)] (4), were synthesized by Cs(I), Rb(I) and 4′-hydroxyisoflavone-3′-sulfonates L1L3 [L1 = 7-methoxy-4′-hydroxyisoflavone-3′-sulfonate, L2 = 7-ethoxy-4′-hydroxyisoflavone-3′-sulfonate, L3 = 7-ethoxy-4′,5-dihydroxyisoflavone-3′-sulfonate]. The crystal structures of 14 were determined by single-crystal X-ray diffraction. The influences of 4′-hydroxyisoflavone-3′-sulfonate ligands and Cs+, Rb+ on their structural features and self-assembly were investigated. The sulfonates of L1L3 not only coordinate with Cs+ or Rb+ directly, but also bridge the organic region and the inorganic region in 14. Non-covalent interactions such as coordination interaction, ππ stacking interaction and hydrogen bonding assembled 14 into 3-D networks together with the electrostatic interactions between Cs+, Rb+ and the sulfonate anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号