首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Raman spectroscopy is an efficient technique for studying the evolution of microstructure of materials under irradiation. For that purpose, a Raman spectrometer has been recently installed at the JANNUS‐Saclay platform. In this paper, we describe the new setup for in situ experiments. These in situ experiments allowed following the microstructural evolution of different materials (SiC, ZrO2 and B4C) as a function of ion fluence on a single sample (either single crystal or polycrystalline ceramics) under the same irradiation conditions. Our results show that Raman spectroscopy is a versatile non‐contact technique for studying on‐line crystalline phase changes or amorphization of irradiated iono‐covalent solids. A detailed analysis of Raman spectra is provided for the three materials (SiC, ZrO2 and B4C) investigated in this study, revealing quite different behaviors upon irradiation. Basically, Raman spectroscopy gives insight on these evolutions at the level of bonds given by specific phonon modes, in good agreement with Rutherford backscattering channeling (RBS/C), X‐ray diffraction (XRD) or transmission electron microscopy (TEM) data, which provide information at a long‐range scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high‐energy diffraction with the in situ synchrotron high‐resolution X‐ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target–substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X‐ray reflectivity, in situ two‐dimensional reciprocal space mapping of symmetric X‐ray diffraction and acquisition of time‐resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two‐dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time‐resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.  相似文献   

3.
A prototype of a 96‐well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19‐ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium‐labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo‐cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo‐cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19‐ID end‐station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.  相似文献   

4.
The first high pressure study of solid hydrazinium monochloride has been performed by in situ Raman spectroscopy and synchrotron X‐ray diffraction (XRD) experiments in diamond anvil cell (DAC) up to 39.5 and 24.6 GPa, respectively. The structure of phase I at room temperature is confirmed to be space group C2/c by the Raman spectral analysis and Rietveld refinement of the XRD pattern. A structural transition from phase I to II is observed at 7.3 GPa. Pressure‐induced position variation of hydrogen atoms in NH3+ unit during the phase transition is attributed to the formation of N―H…Cl hydrogen‐bonds, which play a vital role in the stability and subsequent structural changes of this high energetic material under pressure. This inference is proved from the abnormal pressure shifts and obvious Fermi resonance in NH stretching mode of N2H5+ ion in the Raman experiment. Finally, a further transition from phase II to III accompanied with a slight internal distortion in the N2H5+ ions occurs above 19.8 GPa, and phase III persists up to 39.5 GPa. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A wide range of high‐performance X‐ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non‐destructive' because possible beam‐induced electronic or structural changes may occur during X‐ray irradiation. As these changes may be at least partially reversible, an in situ technique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set‐up with a synchrotron hard X‐ray interface scattering instrument for the in situ detection of work function variations resulting from X‐ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room‐temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X‐ray beam. This demonstrates the usefulness of a SKP for in situ monitoring of surface/interface potentials during X‐ray materials characterization experiments.  相似文献   

6.
Abstract

To investigate the in‐situ ordering process of isotactic polypropylene (iPP) from a melt state, a stationary growth front was prepared by the temperature slope crystallization (TSC) method. During the melt‐crystallization, iPP was crystallized into the α‐phase or β‐phase depending on the crystallizing conditions. The mechanism of the melt‐crystallization at the growth front was precisely observed by wide‐angle and small‐angle x‐ray scattering (WAXS and SAXS) using a strong synchrotron beam. In the TSC apparatus, the sample was crystallized in between a heater, controlled to 220°C, and a cooler, cooled by water to 25°C. We define the z‐axis parallel to the temperature gradient. A‐lamellae and B‐lamellae are also defined as those whose lamellar normal are perpendicular and parallel to the z‐axis, respectively. In a sample‐stop (SS) stage before the TSC, the original α‐phase lamellae became thicker, approaching to the melt‐solid boundary by annealing. The annealing process showed that the α‐phase B‐lamellae remained and the SAXS reflection was stronger on the meridian near the melt‐solid boundary in the SS stage. In the beginning of the TSC, the α‐phase B‐lamellae developed as a primary crystallization. During secondary crystallization under high supercooling, the SAXS cross pattern appeared showing that the α‐phase developed both A‐ and B‐lamellae. As the growth direction of A‐lamellae is parallel to the z‐axis, A‐lamellae grow faster than B‐lamellae. By the self‐epitaxial mechanism on the side surface of the A‐lamellae, the B‐lamellae grow on the base of the A‐lamellae. Following appearance of a spontaneous β‐nucleus, the β‐phase lamellae grew preferentially, excluding the α‐phase, and occupied the whole area of the sample. In this case also, A‐lamellae are advantageous to grow because of the growth direction parallel to the z‐axis. As a result, the SAXS β‐phase reflection appeared on the equator.  相似文献   

7.
An optical polarizing microscope with a hot shear stage was used for an in‐situ investigation of the influences of poly(phenylene sulfide) (PPS) microfibrils on isothermal crystallization of isotactic polypropylene (iPP) under shear. As the nucleation sites on the PPS microfibril's surface are not able to induce a transcrystalline layer, there are only spherulites generated in a PPS/iPP in‐situ microfirbillar blend in quiescent condition. Applying shear during isothermal crystallization, the crystalline morphology greatly changes. There are fibrillar nuclei induced after steady shear with a shear rate of 5 and 10 s–1, and these nuclei formed fibrillar crystals after crystallization completion. Two opposite effects coexist in PPS/iPP in‐situ microfibrillar blends during shear‐induced isothermal crystallization; one is the obstructive effect of PPS microfibrils on the iPP molecular chains orientation; the other is the positive effect provided by stress between fiber and matrix, generated by shear, which reduces the potential barrier of crystallization. The results of wide angle x‐ray diffraction (WAXD) show that there are β‐iPP crystals generated in neat iPP and PPS/iPP blends, but that PPS microfibrils have an inhibiting influence on the formation of β‐iPP.  相似文献   

8.
The formation of β-iPP (β-modification of isotactic polypropylene) in the iPP/ABS (acrylonitrile–butadiene–styrene), iPP/styrene–butadiene (K resin), and iPP/styrene–acrylonitrile (SAN) blends were studied using differential scanning calorimery (DSC), wide angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM). It was found that α-iPP (α-modification of isotactic polypropylene) and β-iPP can simultaneously form in the iPP/ABS blend, whereas only α-iPP exists in the iPP/K resin and iPP/SAN blend samples. The effects of phase composition and thermal conditions on the β-iPP formation in the iPP/ABS blends were also investigated. The results showed that when the ABS content was low, the ABS dispersed phase distributed in the iPP continuous phase, facilitating the growth of β-iPP, and the maximum amount of β-iPP occurred when the composition of iPP/ABS blend approached 80:20 by weight. Furthermore, it was found that the iPP/ABS blend showed an upper critical temperature T c * at 130°C for the formation of β-iPP. When the crystallization temperature was higher than the T c *, the β-iPP did not form. Interestingly, the iPP/ABS blend did not demonstrate the lower critical temperature T c ** previously reported for pure iPP and its blends. Even if the crystallization temperature decreased to 90°C, there was still β-iPP generation, indicating that ABS has a strong ability to induce the β-iPP. However, the annealing experiments results revealed that annealing in the melt state could eliminate the susceptibility to β-crystallization of iPP.  相似文献   

9.
We present new results combining high pressures and temperatures attainable in a diamond anvil cell with in situ synchrotron radiation induced micro-X-ray fluorescence measurements. Hydrothermal diamond anvil cells experiments have been performed by measuring the partitioning of Pb between aqueous fluids (pure water or NaCl-enriched water) and hydrous silicate melts of haplogranite composition using synchrotron X-ray fluorescence. The in situ measurements were performed in the range 0.3–1.2 GPa and 730–850 °C both in the aqueous fluid and in the silicate melts being in equilibrium. Pb is strongly partitioned into high-pressure–temperature hydrous melts when Cl is present in either the hydrous melt or the aqueous fluid. Moreover, our comparisons of in situ results with post-mortem results show that significant changes take place during rapid quenching especially when samples are small (few hundred of microns in diameter). Water exsolution is induced by the quench in the silicate melt showing the high mobility of Pb which immediately partitions into the water vapor phase during the quench. The current in situ approach offers thus a pertinent complementary method to the classical experimental petrology investigations.  相似文献   

10.
ABSTRACT

The structural properties of pyrochlore Eu2Zr2O7 under high pressure have been studied by using Raman spectroscopy and in situ angle-dispersive X-ray diffraction (ADXRD). The results of Raman spectra indicate that Eu2Zr2O7 undergoes a reversible structural change around 21.2?GPa. The results of Rietveld refinements from in situ ADXRD data indicate that the ordered pyrochlore structure (Fd-3m) transforms to the defect-cotunnite structure (Pnma) at 26.5?GPa. The phase transition is irreversible and the transformation process is mainly induced by the accumulations of anti-site defects of the cation sublattice and Frenkel defects on the anion sublattice. Besides, the <Zr–O> bonds should play a more important role than the <Eu–O> bonds in the process of the phase transformation.  相似文献   

11.
Vibrational properties and structural changes under pressure of a highly luminescent molecular organic crystal have been investigated by ultraviolet resonant Raman spectroscopy with a 244‐nm excitation. Resonant Raman modes of α‐perylene crystal up to 1GPa were followed under hydrostatic pressure in an anvil cell with a sapphire window transparent to ultraviolet light. Nonlinear evolution of intra‐molecular modes is induced by pressure. Abrupt shifts of Raman wavenumbers suggest structural and planar modifications of the molecules in the crystal. We interpret these shifts as a first‐order phase transition to a lower volume of unit cell. The luminescence of perylene crystal is gradually modified as a consequence of these structural changes. The present experimental setup allows investigating with Raman spectroscopy very luminescent molecules involved in chemical reactions and molecular organic crystals under relatively high pressure (up to 1GPa). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A new sample cell assembly design for the Paris‐Edinburgh type large‐volume press for simultaneous measurements of X‐ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi‐I to Bi‐II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high‐temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure‐induced structural changes to be directly correlated to electrical and thermal properties.  相似文献   

13.
The diversity in function and mechanical behavior of spider silks, and the ability to produce these silks recombinantly, have tremendous potential in creating a new class of biomimetic materials. Here we investigate the structural and mechanical properties of pyriform silks from the golden orb-weaver, Nephila clavipes. Nanoscale indentation measurements using atomic force microscopy on natural pyriform silk suggests that this biomaterial has high toughness that may be suitable for dissipating high amounts of mechanical energy. We also observed the occurrence of highly organized nanocrystals within the pyriform silk fibers that may contribute to the remarkable energy dissipation capability of these silks. It has been demonstrated that poly-(Gly–Ala) and poly-Ala stretches within the internal block repeat modules of dragline silk fibroins form nanocrystals, and these nanocrystalline structures may be responsible for the high extensibility of the dragline silks. In contrast, amino acid sequence analysis shows that PySp2 does not contain the same motifs. In the absence of poly-(Gly–Ala) and poly-Ala repeats, we hypothesized that PySp2 contains new protein motifs sufficient to polymerize into functional structures. To investigate the functional contributions of these novel motifs during pyriform fiber formation, we expressed different recombinant PySp2 fibroins with various segments spanning its block repeat units. We demonstrate that PySp2 recombinant proteins with the Pro-rich sub-block domain (PXP motifs, where X= sub-set of the amino acids A, L, or R) and/or the Ser + Gln + Ala-rich sub-block domain (QQSSVAQS motifs) are sufficient for artificial fiber formation. Moreover, we show that recombinant PySp2 proteins that contain a single block repeat unit can self-assemble into foam-like nanostructures. Collectively, our findings support the use of PySp2 recombinant proteins for a wide range of biomimetic materials with morphologies ranging from fibers to porous structures.  相似文献   

14.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
We have studied the stable end phase formed in amorphous germanium (a‐Ge) films that have been subjected to a pressure‐induced phase transformation under indentation loading using a large (20 µm) spherical indenter. After indentation the samples have been annealed at room temperature to remove any residual unstable R8 and BC8 phases. Raman spectroscopy indicates a single broad peak centred around 292 cm–1 and we have used first principles density functional perturbation theory calculations and simulated Raman spectra for nano‐crystalline diamond cubic germanium (DC‐Ge) to help identification of the final phase as hexagonal diamond germanium (HEX‐Ge). Transmission electron microscopy and selected area diffraction analysis confirmed the presence of a dominant HEX‐Ge end phase. These results help explain significant inconsistencies in the literature relating to indentation‐induced phase transitions in DC‐ and a‐Ge. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Abstract

A novel scheme for a code-division multiplexing based fiber Bragg grating sensor system is theoretically analyzed and experimentally demonstrated. The results show that the proposed scheme enables an improved signal-to-noise ratio performance compared with the time-division multiplexing method and that spontaneous–spontaneous beating noise should be included in the analysis to avoid overestimation. The simple and effective setup provides a competitive approach for using fiber Bragg grating sensors in practical application systems.  相似文献   

17.
Several radically new independent in situ techniques for characterizing physicomechanical properties of materials in microvolumes are described. In particular, mechanisms behind the formation of an indent and the surrounding deformation zone were studied at a microlevel. With ionic crystals, it was demonstrated that indentation, followed by the formation of the deformation zone, passes the following stages: purely elastic deformation stage, the stage of monoatomic displacement of a material from under the indenter; and a number of final stages where dislocation plasticity is essential. Kinetic, dissipative, and activation parameters of indentation were determined, and basic mass transfer micromechanisms for each of the stages were elucidated.  相似文献   

18.
The indentation of metal by a flat punch is a model system for forming processes and intimately linked with hardness testing. Here, we perform first-in-class, high-fidelity finite element (FE) simulations in an arbitrary Lagrangian–Eulerian (ALE) framework to study the deformation field in deep punch indentation of annealed copper. The use of ALE allows indentation depth to punch width ratios as high as 1.6, while the use of Lagrangian tracer particles reveals pathlines of material transport. Field quantities such as the plastic strain, strain rate and velocity are obtained at high resolution. A low-strain, dead-metal zone (DMZ) that is stationary with respect to the indenter forms immediately below the punch. Crucially, it is found that DMZs are unavoidable in deep punch indentation, forming at the outset and irrespective of the coefficient of friction. However, the area of this zone shrinks as the indentation progresses at a rate that is inversely related to the friction. The simulations thus explain why Prandtl’s view of punch indentation, which incorporates DMZs, is physically more accurate than Hill’s view. The computations successfully reproduce the strain field inhomogeneity seen in recent in situ imaging experiments. While DMZ formation is impervious to the hardening model used, Zerilli–Armstrong hardening provides more accurate indentation force estimates than Johnson–Cook hardening. Lastly, the residual impression and factors affecting its shape are studied. The sides of impressed metal are never vertical, but at an inclination to it. Methods to modify such features, of potential interest in metal forming, are discussed briefly.  相似文献   

19.
A new Raman spectroscopic setup for in situ characterization of catalytic materials based on a tunable laser system and a confocal Raman microscope is described. The laser excitation wavelength is variable over a broad range from deep ultraviolet (UV) to near‐infrared allowing for targeted use of Raman diagnostics for catalyst characterization. By utilization of resonance effects, the sensitivity of the method can be strongly increased. The potential of the setup is illustrated by new in situ Raman results on dispersed vanadium oxide catalysts obtained at 217.5 and 280 nm UV laser excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号