首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

2.
Abstract

Polymerization of octadecyl acrylate (ODA) was carried out in benzene solution using the 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as the reversible addition–fragmentation chain‐transfer (RAFT) agent and AIBN as the initiator. The results show the obtained polymer with controlled molecular weight and low PDI value. The relationships between both of the ln([M 0]/[M]) vs. reaction time and molecular weight vs. conversion showed a straight line. The block copolymer of ODA and styrene (PODA‐b‐PSt) obtained using poly(octadecyl acrylate) (PODA) as a macro‐RAFT agent. The polymers were characterized by 1H NMR, DSC, and gel permeation chromatograph (GPC). The effect of molar ratio [CPDB]:[AIBN] and reaction temperature on polymerization was investigated.  相似文献   

3.
A novel dithiocarbamate, 2‐nonyl‐benzoimidazole‐1‐carbodithioic acid benzyl ester ( 1a ), was synthesized and successfully used in RAFT polymerization of styrene in bulk with thermal initiation. The effect of molar ratio of styrene to RAFT agent on the polymerization was investigated. The linear relationship between ln([M]0/[M]) and polymerization time indicated that the polymerization was first‐order with respect to monomer concentration. The molecular weights increased linearly with monomer conversion and were close to corresponding theoretical values. The molecular weight distributions (M w /M n ) kept very narrow (M w /M n <1.1) at a wide range of conversions of 14.2% to 73.3%. The obtained polymer had a strong ultraviolet absorption at 329 nm, which indicated that the 1a moiety remained at the end of polymer chain.  相似文献   

4.
A metal complex, cobalt(II) 2‐ethylhexanoate (CEH), was added to the system of thermal‐initiated reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent at 115 °C. The polymerization rate was remarkably enhanced in the presence of CEH in comparison with that in the absence of CEH, and the increase of the CPDN concentration also accelerated the rate of polymerization. The polymerization in the concurrence of CPDN and CEH demonstrated the characters of “living”/controlled free radical polymerization: the number‐average molecular weights (Mn) increasing linearly with monomer conversion, narrow molecular weight distributions (Mw/Mn) and obtained PMMA end‐capped with the CPDN moieties. Meanwhile, CEH can also accelerate the rate of RAFT polymerization of MMA using the PMMA as macro‐RAFT agent instead of CPDN. Similar polymerization profiles were obtained when copper (I) bromide (CuBr)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine was used instead of CEH. Extensive experiments in the presence of butyl methacrylate, bis(cyclopentadienyl) cobalt(II) and cumyl dithionaphthalenoate were also conducted; similar results as those of MMA/CPDN/CEH system were obtained. A transition of the polymerization mechanism, from RAFT process without CEH addition to atom transfer radical polymerization in the presence of CEH, was possibly responsible for polymerization profiles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5722–5730, 2007  相似文献   

5.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

6.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

7.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

8.
In the presence of β‐cyclodextrin (β‐CD), reversible addition–fragmentation chain transfer (RAFT) polymerization has been successfully applied to control the molecular weight and polydispersity [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] in the miniemulsion polymerization of butyl methacrylate, with 2‐cyanoprop‐2‐yl dithiobenzoate as a chain‐transfer agent (or RAFT agent) and 2,2′‐azoisobutyronitrile (AIBN) as an initiator. β‐CD acted as both a stabilizer and a solubilizer, assisting the transportation of the water‐insoluble, low‐molecular‐weight RAFT agent into the polymerization loca (i.e., droplets or latex particles) and thereby ensuring that the RAFT agent was homogeneous in the polymerization loca. The polymers produced in the system of β‐CD exhibited narrower polydispersity (1.2 < Mw/Mn < 1.3) than those without β‐CD. Moreover, the number‐average molecular weight in the former case could be controlled by a definite amount of the RAFT agent. Significantly, β‐CD was proved to have a favorable effect on the stability of polymer latex, and no coagulum was observed. The effects of the concentrations of the RAFT agent and AIBN on the conversion, the molecular weight and its distribution, and the particle size of latices were investigated in detail. Furthermore, the influences of the variations of the surfactant (sodium dodecyl sulfate) and costabilizer (hexadecane) on the RAFT/miniemulsion polymerization were also studied. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2931–2940, 2005  相似文献   

9.
The kinetics of the RAFT polymerization of p‐acetoxystyrene using a trithiocarbonate chain transfer agent, S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer‐to‐chain transfer agent ratio, and solvent were varied and their impact on the rate of polymerization and quality of the final polymer examined. Linear kinetic plots, linear increase of Mn with monomer conversion, and low final molecular weight dispersities were used as criteria for the selection of optimized polymerization conditions, which included a temperature of 70 or 80 °C with 10 mol % AIBN initiator in bulk for low conversions or in 1,4‐dioxane at a monomer‐to‐solvent volume ratio of 1:1 for higher conversions This study opens the way for the use of DDMAT as a chain transfer agent for RAFT polymerization to incorporate p‐acetoxystyrene together with other functional monomers into well‐defined copolymers, block copolymers, and nanostructures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2517–2524, 2010  相似文献   

10.
A novel optically active monomer, 6‐{4‐[4‐(1‐phenyl‐1H‐tetrazol‐5‐yloxy)‐phenylazo] ‐phenoxy}‐hexyl methacrylate (PTPPHMA) bearing tetrazole and azobenzol moieties, was synthesized and polymerized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as the RAFT agent and 2, 2′‐azobis(isobutyronitrile) (AIBN) as the initiator. Well‐defined optically active photochromic polyPTPPHMA(PPTPPHMA) was obtained. “Living”/controlled characteristics were observed in the polymerization: well‐controlled molecular weights (Mns), narrow molecular weight distributions (Mw/Mn) of the polymers and successful chain‐extension of PPTPPHMA with styrene (St) as the second monomer. The photochemical interconversion between trans and cis isomers of PPTPPHMA in N,N′‐dimethyl formamide (DMF) solution was explored under irradiation of ultraviolet light. The photoinduced birefringence on the thin films of PPTPPHMA was investigated. A maximum birefringence of 0.1 was obtained, and no significant change of profiles of the birefringence after several cycles of writing/erasing/rewriting sequences was observed. The surface‐relief‐gratings (SRGs) were induced on the polymer films by interference of Kr+ laser beams at 413.1 nm with 35 mW/cm2 intensity, the diffraction efficiencies from SRGs were measured to be in the range of 2.0–2.5%. The atomic force microscopy (AFM) results showed the gratings produced on the surfaces of the polymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 682–691, 2008  相似文献   

11.
A diblock copolymer, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), was grafted onto the surface of nano-titania (nano-TiO2) successfully via reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of TiO2 nanoparticles was modified initially by attaching dithioester groups to the surface using silane coupling agent 3-(chloropropyl)triethoxy silane and sodium ethyl xanthate. The polymerization of methyl methacrylate and styrene were then initiated and propagated on the TiO2 surface by RAFT polymerization. The resulting composite nanoparticles were characterized by means of XPS, FT-IR, 1H NMR and TGA. The results confirmed the successful grafting of poly(methyl methacrylate) (PMMA) and diblock copolymer chains onto the surface of TiO2. The amount of PMMA grafted onto the TiO2 surface increased with the polymerization time. Moreover, the kinetic studies revealed that the ln([M]0/[M]), where [M]0 is the initial and [M] is the time dependent monomer concentrations, increased linearly with the polymerization time, indicating the living characteristics of the RAFT polymerization.  相似文献   

12.
In this work, cupric oxide (CuO) or cuprous oxide (Cu2O) was used as the catalyst for the single electron transfer‐reversible addition‐fragmentation chain transfer (SET‐RAFT) polymerization of methyl methacrylate in the presence of ascorbic acid at 25 °C. 2‐Cyanoprop‐2‐yl‐1‐dithionaphthalate (CPDN) was used as the RAFT agent. The polymerization occurred smoothly after an induction period arising from the slow activation of CuO (or Cu2O) and the “initialization” process in RAFT polymerization. The polymerizations conveyed features of “living”/controlled radical polymerizations: linear evolution of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and high retention of chain end fidelity. From the polymerization profile, it was deduced that the polymerization proceeded via a conjunct mechanism of single electron transfer‐living radical polymerization (SET‐LRP) and RAFT polymerization, wherein CPDN acting as the initiator for SET‐LRP and chain transfer agent for RAFT polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Condensation polymerization of 6‐(N‐substituted‐amino)‐2‐naphthoic acid esters ( 1 ) was investigated as an extension of chain‐growth condensation polymerization (CGCP). Methyl 6‐(3,7‐dimethyloctylamino)‐2‐naphthoate ( 1b ) was polymerized at ?10 °C in the presence of phenyl 4‐methylbenzoate ( 2 ) as an initiator and lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. When the feed ratio [ 1a ]0/[ 2 ]0 was 10 or 20, poly(naphthalenecarboxamide) with defined molecular weight and low polydispersity was obtained, together with a small amount of cyclic trimer. However, polymer was precipitated during polymerization under similar conditions in [ 1a ]0/[ 2 ]0 = 34. To increase the solubility of the polymer, monomers 1c and 1d with a tri(ethylene glycol) (TEG) monomethyl ether side chain instead of the 3,7‐dimethyloctyl side chain were synthesized. Polymerization of the methyl ester monomer 1c did not proceed well, affording only oligomer and unreacted 1c , whereas polymerization of the phenyl ester monomer 1d afforded well‐defined poly(naphthalenecarboxamide) together with small amounts of cyclic oligomers in [ 1d ]0/[ 2 ]0 = 10 and 29. The polymerization at high feed ratio ([ 1d ]0/[ 2 ]0 = 32.6) was accompanied with self‐condensation to give polyamide with a lower molecular weight than the calculated value. Such undesirable self‐condensation would result from insufficient deactivation of the electrophilic ester moiety by the electron‐donating resonance effect of the amide anion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Poly(p‐nitrophenyl acrylate)s (PNPAs) with different molecular mass and narrow polydispersity were successfully synthesized for the first time by reversible addition–fragmentation transfer (RAFT) polymerization with azobisisobutyronitrile (AIBN) as an initiator and [1‐(ethoxy carbonyl) prop‐1‐yl dithiobenzoate] as the chain‐transfer agent. Although the molecular mass of PNPAs can be controlled by the molar ratio of NPA to RAFT agent and the conversion, a trace of homo‐PNPA was found, especially at the early stage of polymerization. The dithiobenzoyl‐terminated PNPA obtained was used as a macro chain‐transfer agent in the successive RAFT block copolymerization of styrene (St) with AIBN as the initiator. After purification by two washings with cyclohexane and nitromethane to remove homo‐PSt and homo‐PNPA, the pure diblock copolymers, PNPA‐b‐PSt's, with narrow molecular weight distribution were obtained. The structural analysis of polymerization products by 1H NMR and GPC verified the formation of diblock copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4862–4872, 2004  相似文献   

16.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

17.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

18.
The reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in alcohol/water mixture mediated with the poly(N‐isopropylacrylamide) trithiocarbonate macro‐RAFT agent (PNIPAM‐TTC) is studied and compared with the general RAFT dispersion polymerization in the presence of a small molecular RAFT agent. Both the homogeneous/quasi‐homogeneous polymerization before particle nucleation and the heterogeneous polymerization after particle nucleation are involved in the PNIPAM‐TTC‐mediated RAFT polymerization, and the two‐stage increase in the molecular weight (Mn) and nanoparticle size of the synthesized block copolymer is found. In the initial homogeneous/quasi‐homogeneous polymerization, the Mn and nanoparticle size slowly increase with monomer conversion, whereas the Mn and particle size quickly increase in the subsequent heterogeneous RAFT polymerization, which is much different from those in the general RAFT dispersion polymerization. Besides, the PNIPAM‐TTC‐mediated RAFT polymerization runs much faster than the general RAFT dispersion polymerization. This study is anticipated to be helpful to understand the polymer chain extension through RAFT polymerization under dispersion conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
LI  Yongjun  ZHANG  Sen  FENG  Chun  ZHANG  Yaqin  LI  Qingnuan  LI  Wenxin  HUANG  Xiaoyu 《中国化学》2009,27(11):2261-2266
Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl‐based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The PFCB‐containing acrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)‐phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2′‐azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (Mw/Mn≦1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4‐cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG‐CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB‐based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.  相似文献   

20.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号