首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we propose an efficient matrix decomposition algorithm for the Method of Fundamental Solutions when applied to three-dimensional boundary value problems governed by elliptic systems of partial differential equations. In particular, we consider problems arising in linear elasticity in axisymmetric domains. The proposed algorithm exploits the block circulant structure of the coefficient matrices and makes use of fast Fourier transforms. The algorithm is also applied to problems in thermo-elasticity. Several numerical experiments are carried out.  相似文献   

2.
We modify and extend proofs of Serrin’s symmetry result for overdetermined boundary value problems from the Laplace-operator to a general quasilinear operator and remove a strong ellipticity assumption in Philippin (Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987), Longman Sci. Tech., Pitman Res. Notes Math. Ser., Harlow, 175, pp. 34–48, 1988) and a growth assumption in Garofalo and Lewis (A symmetry result related to some overdetermined boundary value problems, Am. J. Math. 111, 9–33, 1989) on the diffusion coefficient A, as well as a starshapedness assumption on Ω in Fragalà et al. (Overdetermined boundary value problems with possibly degenerate ellipticity: a geometric approach. Math. Zeitschr. 254, 117–132, 2006).  相似文献   

3.
We develop the concept and the calculus of anti-self-dual (ASD) Lagrangians and their derived vector fields which seem inherent to many partial differential equations and evolutionary systems. They are natural extensions of gradients of convex functions – hence of self-adjoint positive operators – which usually drive dissipative systems, but also provide representations for the superposition of such gradients with skew-symmetric operators which normally generate unitary flows. They yield variational formulations and resolutions for large classes of non-potential boundary value problems and initial-value parabolic equations. Solutions are minima of newly devised energy functionals, however, and just like the self (and anti-self) dual equations of quantum field theory (e.g. Yang–Mills) the equations associated to such minima are not derived from the fact they are critical points of the functional I, but because they are also zeroes of suitably derived Lagrangians. The approach has many advantages: it solves variationally many equations and systems that cannot be obtained as Euler–Lagrange equations of action functionals, since they can involve non-self-adjoint or other non-potential operators; it also associates variational principles to variational inequalities, and to various dissipative initial-value first order parabolic problems. These equations can therefore be analyzed with the full range of methods – computational or not – that are available for variational settings. Most remarkable are the permanence properties that ASD Lagrangians possess making their calculus relatively manageable and their domain of applications quite broad.  相似文献   

4.
The numerical differentiation is often used when dealing with the differential equations. Using the numerical differentiation, the differential equations can be transformed into algebraic equations. Then we can get the numerical solution from the algebraic equations. But the numerical differentiation process is very sensitive to even a small level of errors. In contrast, it is expected that on average the numerical integration process is much less sensitive to errors. In this paper, we provide a new method using the DQ method based on the interpolation of the highest derivative (DQIHD) for the differential equations. The original function is then obtained by integration. In this paper, the DQIHD method was applied to the buckling analysis of thin isotropic plates and Winkler plates, the numerical results agree well with the analytic solutions, and the results show that our method is of high accuracy, of good convergence with little computational efforts. And it is easy to deal with the boundary conditions.  相似文献   

5.
In this paper we establish the existence and the uniqueness of positive solutions for Dirichlet boundary value problems of nonlinear elliptic equations with singularity. We obtain the existence and the uniqueness by using the mixed monotone method in the cone theory. Moreover, we give an iterative method of constructing the solution. The rate of convergence of the iterative sequence is analyzed.  相似文献   

6.
On employing isoparametric, piecewise linear shape functions over a flat triangle, exact formulae are derived for all surface potentials involved in the numerical treatment of three-dimensional singular and hyper-singular boundary integral equations in linear elasticity. These formulae are valid for an arbitrary source point in space and are represented as analytical expressions along the edges of the integration triangle. They can be employed to solve integral equations defined on triangulated surfaces via a collocation method or may be utilized as analytical expressions for the inner integrals in a Galerkin technique. A numerical example involving a unit triangle and a source point located at various distances above it, as well as sample problems solved by a collocation boundary element method for the Lamé equation are included to validate the proposed formulae.  相似文献   

7.
This paper focuses on nonlocal boundary value problems for linear and nonlinear abstract elliptic equations in Banach spaces. Here equations and boundary conditions contain certain parameters. The uniform separability of the linear problem and the existence and uniqueness of maximal regular solution of nonlinear problem are obtained in Lp spaces. For linear case the discreteness of spectrum of corresponding parameter dependent differential operator is obtained. The behavior of solution when the parameter approaches zero and its smoothness with respect to the parameter is established. Moreover, we show the estimate for analytic semigroups in terms of interpolation spaces. This fact can be used to obtain maximal regularity properties for abstract boundary value problems.  相似文献   

8.
In this paper, we investigate the pseudospectral method on quadrilaterals. Some results on Legendre-Gauss-type interpolation are established, which play important roles in the pseudospectral method for partial differential equations defined on quadrilaterals. As examples of applications, we propose pseudospectral methods for two model problems and prove their spectral accuracy in space. Numerical results demonstrate the efficiency of the suggested algorithms. The approximation results and techniques developed in this paper are also applicable to other problems defined on quadrilaterals.  相似文献   

9.
Galerkin-wavelet methods for two-point boundary value problems   总被引:7,自引:0,他引:7  
Summary Anti-derivatives of wavelets are used for the numerical solution of differential equations. Optimal error estimates are obtained in the applications to two-point boundary value problems of second order. The orthogonal property of the wavelets is used to construct efficient iterative methods for the solution of the resultant linear algebraic systems. Numerical examples are given.This work was supported by National Science Foundation  相似文献   

10.
We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirichlet problem which are 3rd order accurate in the boundary perturbation size. Using a variational boundary integral equation formulation on the unperturbed, “nominal” boundary and a wavelet discretization, we present and analyze an algorithm to approximate the random solution’s mean and its two-point correlation function at essentially optimal order in essentially work and memory, where N denotes the number of unknowns required for consistent discretization of the boundary of the nominal domain. This work was supported by the EEC Human Potential Programme under contract HPRN-CT-2002-00286, “Breaking Complexity.” Work initiated while HH visited the Seminar for Applied Mathematics at ETH Zürich in the Wintersemester 2005/06 and completed during the summer programme CEMRACS2006 “Modélisation de l’aléatoire et propagation d’incertitudes” in July and August 2006 at the C.I.R.M., Marseille, France.  相似文献   

11.
This paper deals with some general irregular oblique derivative problems for nonlinear uniformly elliptic equations of second order in a multiply connected plane domain. Firstly, we state the well-posedness of a new set of modified boundary conditions. Secondly, we verify the existence of solutions of the modified boundary-value problem for harmonic functions, and then prove the solvability of the modified problem for nonlinear elliptic equations, which includes the original boundary-value problem (i.e. boundary conditions without involving undertermined functions data). Here, mainly, the location of the zeros of analytic functions, a priori estimates for solutions and the continuity method are used in deriving all these results. Furthermore, the present approach and setting seems to be new and different from what has been employed before.The research was partially supported by a UPGC Grant of Hong Kong.  相似文献   

12.
The numerical solution of acoustic wave propagation problems in planar domains with corners and cracks is considered. Since the exact solution of such problems is singular in the neighborhood of the geometric singularities the standard meshfree methods, based on global interpolation by analytic functions, show low accuracy. In order to circumvent this issue, a meshfree modification of the method of fundamental solutions is developed, where the approximation basis is enriched by an extra span of corner adapted non-smooth shape functions. The high accuracy of the new method is illustrated by solving several boundary value problems for the Helmholtz equation, modelling physical phenomena from the fields of room acoustics and acoustic resonance.  相似文献   

13.
Variational formulations of nonlinear constrained boundary value problems in reflexive Banach spaces are discussed from a compositional duality approach. The mixed variational compatibility conditions of the theory correspond to the surjectivity of the primal coupling boundary and interior operators.  相似文献   

14.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. Optimized Schwarz methods employ a first or higher order boundary condition along the artificial interface to accelerate convergence. In the literature, the analysis of optimized Schwarz methods relies on Fourier analysis and so the domains are restricted to be regular (rectangular). In this paper, we express the interface operator of an optimized Schwarz method in terms of Poincare-Steklov operators. This enables us to derive an upper bound of the spectral radius of the operator arising in this method of 1−O(h1/4) on a class of general domains, where h is the discretization parameter. This is the predicted rate for a second order optimized Schwarz method in the literature on rectangular subdomains and is also the observed rate in numerical simulations.  相似文献   

15.
In a recent paper by the current authors a new methodology called the Extended-Domain-Eigenfunction-Method (EDEM) was proposed for solving elliptic boundary value problems on annular-like domains. In this paper we present and investigate one possible numerical algorithm to implement the EDEM. This algorithm is used to solve modified Helmholtz BVPs on annular-like domains. Two examples of annular-like domains are studied. The results and performance are compared with those of the well-known boundary element method (BEM). The high accuracy of the EDEM solutions and the superior efficiency of the EDEM over the BEM, make EDEM an excellent alternate candidate to use in the animation industry, where speed is a predominant requirement, and by the scientific community where accuracy is the paramount objective.  相似文献   

16.
A systematic treatment of the three-dimensional Poisson equation via singular and hypersingular boundary integral equation techniques is investigated in the context of a Galerkin approximation. Developed to conveniently deal with domain integrals without a volume-fitted mesh, the proposed method initially converts domain integrals featuring the Newton potential and its gradient into equivalent surface integrals. Then, the resulting boundary integrals are evaluated by means of well-established cubature methods. In this transformation, weakly-singular domain integrals, defined over simply- or multiply-connected domains with Lipschitz boundaries, are rigorously converted into weakly-singular surface integrals. Combined with the semi-analytic integration approach developed for potential problems to accurately calculate singular and hypersingular Galerkin surface integrals, this technique can be employed to effectively deal with mixed boundary-value problems without the need to partition the underlying domain into volume cells. Sample problems are included to validate the proposed approach.  相似文献   

17.
18.
Summary In this paper we consider the following Newton-like methods for the solution of nonlinear equations. In each step of the Newton method the linear equations are solved approximatively by a projection method. We call this a Projective Newton method. For a fixed projection method the approximations often are the same as those of the Newton method applied to a nonlinear projection method. But the efficiency can be increased by adapting the accuracy of the projection method to the convergence of the approximations. We investigate the convergence and the order of convergence for these methods. The results are applied to some Projective Newton methods for nonlinear two point boundary value problems. Some numerical results indicate the efficiency of these methods.
  相似文献   

19.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

20.
A compact finite difference method with non-isotropic mesh is proposed for a two-dimensional fourth-order nonlinear elliptic boundary value problem. The existence and uniqueness of its solutions are investigated by the method of upper and lower solutions, without any requirement of the monotonicity of the nonlinear term. Three monotone and convergent iterations are provided for resolving the resulting discrete systems efficiently. The convergence and the fourth-order accuracy of the proposed method are proved. Numerical results demonstrate the high efficiency and advantages of this new approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号