首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Thermal properties and overall rates of isothermal crystallization from the melt of a commercial ionic copolyester (K‐X/SPET) based on poly(ethylene terephthalate) (PET) were analyzed in detail over a composition range from pure PET to a copolymer containing 10.1 mol% of potassium‐neutralized sulfonated PET. For measurements, differential scanning calorimetry (DSC) was used. Copolyesters with the ionic group content of 4.4 mol% or more were unable to crystallize. The isothermal melt crystallization of the copolyesters was analyzed using both the Avrami and the modified Lauritzen‐Hoffman equations. It was found that both the overall rate constant, as well as the Avrami parameter for the primary crystallization stage, varied with the sulfonated unit percentage—but surface free energy and work of folding were practically independent of them. The observed changes in the thermal properties and the kinetic parameters of crystallization were attributed to the comonomer effects and the intermolecular aggregation of the ionic groups.  相似文献   

2.
3.
The crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP with two organic phosphates, sodium salt (NA7) and triglyceride ester (NA8) of 2,2'-methylene-bis(4,6-di-tert-butylphenyl) phosphoric acid, were investigated by means of a differential scanning calorimeter under isothermal and nonisothermal conditions. During isothermal crystallization, a modified Avrami equation was used to describe the crystallization kinetics. Moreover, kinetics parameters, such as the Avrami exponent, n, the crystallization rate constant, k, and the half-time of crystallization, τ1/2, are compared. The results showed that a dramatic decrease of the half-time of crystallization, as well as a significant increase of the overall crystallization rate, were observed in the presence of the organic phosphates. During nonisothermal crystallization, the primary crystallization was analyzed using the Ozawa model, leading to similar Avrami exponents for iPP and iPP/NA7, which means simultaneous nucleation with three-dimensional spherulitic growth. However, for iPP/NA8, the Avrami exponent in nonisothermal crystallization is evidently different from that in isothermal crystallization, which would indicate a different mechanism of crystal growth. Adding the nucleating agent to iPP makes the overall crystallization activation energy increase.  相似文献   

4.
5.
Films of ethylene vinyl alcohol copolymer (EVOH) and EVOH containing poly(oxypropylene)diamine intercalated montmorrilonite were prepared by solution casting. The nanostructures and viscosity were characterized by small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and rheological testing. The nonisothermal crystallization kinetics of the samples were investigated by the Ozawa's and Mo's methods and the crystallization activation energy by Kissinger's model. The SAXS and TEM analysis demonstrated that the nanoplatelets, with an intercalated structure, were dispersed in the EVOH matrix. The rheological tests showed that the incorporation of the modified clay could increase the viscosity of the composite system. The Mo's method more successfully described the nonisothermal ctystallization behavior of neat EVOH and its nanocomposites as compared with the Ozawa's method. Adding the nanoclays had a heterogeneous nucleation effect to accelerate the crystallization of EVOH despite hindering the macromolecular chains movement.  相似文献   

6.
为了在量热实验中应用Burton Cabrera Frank(BCF)位错理论,设计了Zn(Val)Ac2在水 丙酮混合溶剂 中的稀释/结晶体系.为此,通过实验,首先确定了Zn(Val)Ac2在水 丙酮中稀释/结晶生长的最佳体积比为 1∶10.设计了测定该稀释/结晶生长过程的实验方法和框图,简要推导了该结晶生长过程的动力学方程,认为当 晶体生长过程中的BCF常数a和b远小于结晶生长速率常数k2和k1时,结晶过程即符合BCF理论.用微量热 法测定了反应体系分别在298.15、301.15、304.15和307.15K时的放热量及产热速率,计算得到了各温度下的 结晶生长速率常数k2×10-3和k1×10-3分别为3.60、3.92、4.22、4.47J/s和1.54、2.14、2.53、2.97L/s而相 应的BCF常数a×10-5和b×10-7的值分别为3.09、1.16、2.06、2.99J/s和1.10、0.53、1.03、1.66g/s,远比 k2和k1小,从而证明了该结晶过程符合BCF位错理论,说明在一定条件下,BCF位错理论可应用于微量热实 验中.  相似文献   

7.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

8.
Crystallization and glass transition kinetics of Se70−xGa30Inx (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (Tg) with the heating rate (β) was used to calculate the glass transition activation energy (Et) using two different models. Meanwhile, the variation of the peak temperature of crystallization (Tp) with β was utilized to deduce the crystallization activation energy (Ec) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that Et decreases with increasing In content, while both Tg and Ec exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number <Z> was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass.  相似文献   

9.
The nonisothermal crystallization process of polycaprolactone (PCL)/crosslinked carboxylated polyester resin (CPER) blends has been investigated for different blend concentrations by differential scanning calorimetry (DSC). The DSC measurements were carried out under different cooling rates namely: 1, 3, 5, 10, and 20°C/min. Thermally induced crosslinking of CPER in the blends was accomplished using triglycidyl isocyanurate as a crosslinking agent at 200°C for 10 min. The cured PCL/CPER blends were transparent above the melting temperature of PCL and only one glass transition temperature, Tg, located in the temperature range between the two Tgs of the pure polymer components, was observed, indicating that PCL and crosslinked CPER are miscible over the entire range of concentration. The nonisothermal crystallization kinetics was analyzed based on different theoretical approaches, including modified Avrami, Ozawa, and combined Avrami–Ozawa methods. All of the different theoretical approaches successfully described the kinetic behavior of the nonisothermal crystallization process of PCL in the blends. In addition, the spherulitic growth rate was evaluated nonisothermally from the spherulitic morphologies at different temperatures using polarized optical microscope during cooling the molten sample. Only one master curve of temperature dependence of crystal growth rate could be constructed for PCL/CPER blends, regardless of different blend concentrations. Furthermore, the activation energy of nonisothermal crystallization process (ΔEa) was calculated as a function of blend concentration based on the Kissinger equation. The value of ΔEa was found to be concentration dependent, i.e., increasing from 83 kJ/mol for pure PCL to 115 and 119 kJ/mol for 75 and 50 wt% PCL, respectively. This finding suggested that CPER could significantly restrict the dynamics of the PCL chain segments, thereby inhibit the crystallization process and consequently elevate the ΔEa.  相似文献   

10.
The isothermal crystallization behavior and crystal structure of the polypropylene (PP) component in wood plastic composites (WPC) with respect to wood particle content and maleic anhydride-grafted polypropylene (MAHPP) compatibilizer were studied by means of polarized optical microscopy, scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. It was found that under the experimental conditions of this research, the speed of crystallization of PP was faster in WPC with MAHPP than in composites without MAHPP. This is ascribed to the difference in undercooling due to the change in the equilibrium melting temperatures (T 0 m ) of the PP component in WPC due to the addition of wood flour and MAHPP compatibilizer. T 0 m decreased with the increase of wood particle content, and it decreased more severely with the addition of wood flour than the addition of compatibilizer. The half-crystallization time was the smallest in PP/wood composites, intermediate in PP/wood/compatibilizer system, and the largest in pure PP under the same undercooling. The fast crystallization in PP/wood composites is ascribed to the heterogeneous nucleation effects of wood particles, which could be hindered by the MAHPP compatibilizers; this was verified by the higher fold surface free energy in WPC with compatibilizer than in WPC without compatibilizer.  相似文献   

11.
Molybdenum lead phosphate glasses doped with La2O3 of the system xMoO3-5La2O3-50P2O5-(45−x)PbO, with 0≤x≤25 mol%, have been synthesized and studied by FTIR, ultrasonic and differential scanning calorimetry (DSC) in order to investigate the role of MoO3 content on their atomic structure. The constants of elasticity and Debye temperatures of the glasses have been investigated using sound velocity measurements at 4 MHz. According to the IR analysis, the vibrations of the phosphate structural units are shifted towards higher wavenumbers associated with the formation of bridging oxygens. The change in density with MoO3 content reveals that the molybdate units are less dense than the lead units. The observed compositional dependence of the constants of elasticity is interpreted in terms of the effect of MoO3 on the different phosphate bonds. It is assumed that MoO3 plays the role of a former by increasing the ultrasonic velocity and the constants of elasticity of the phosphate glasses.  相似文献   

12.
The crystallization of silicon rich hydrogenated amorphous silicon carbon films prepared by Plasma Enhanced Chemical Vapor Deposition technique has been induced by excimer laser annealing as well as thermal annealing. The excimer laser energy density (Ed) and the annealing temperature were varied from 123 to 242 mJ/cm2 and from 250 to 1200 °C respectively. The effects of the two crystallization processes on the structural properties and bonding configurations of the films have been studied. The main results are that for the laser annealed samples, cubic SiC crystallites are formed for Ed ≥ 188 mJ/cm2, while for the thermal annealed samples, micro-crystallites SiC and polycrystalline hexagonal SiC are observed for the annealing temperature of 800 and 1200 °C respectively. The crystallinity degree has been found to improve with the increase in the laser energy density as well as with the increase in the annealing temperature.  相似文献   

13.
In this work, isothermal and nonisothermal crystallization kinetics of poly(ethylene oxide) (PEO) and PEO in PEO/fatty acid (lauric and stearic acid) blends, that are used as thermal energy storage materials, was studied using differential scanning calorimetry (DSC) data. The Avrami equation was adopted to describe isothermal crystallization of PEO and nonisothermal crystallization was analyzed using both the modified Avrami approach and Ozawa method. Avrami exponent (n) for PEO crystallization was in the range 1.08–1.32 (10–90% relative crystallinity), despite of spherulites formation, while for PEO in PEO/fatty acid blends n was between 1.61 and 2.13. Hoffman and Lauritzen theory was applied to calculate the activation energy of nucleation (Kg) – the lowest value of Kg was observed for pure PEO, despite of heterogeneous nucleation of fatty acid crystals in PEO/fatty acid blends. For nonisothermal crystallization of PEO in PEO/lauric acid (1:1 w/w) and PEO/stearic acid (1:3 w/w) blends, secondary crystallization occurred and values of the Avrami exponent were 2.8 and 2.0, respectively. The crystallization activation energies of PEO were determined to be ?260 kJ/mol for pure PEO, ?538 kJ/mol for PEO/lauric acid blend, and ?387 kJ/mol for PEO/stearic acid blend for isothermal crystallization and ?135,6 kJ/mol, ?114,5 kJ/mol, and ?92,8 kJ/mol, respectively, for nonisothermal crystallization.  相似文献   

14.
15.
The incorporation of a nucleating agent into isotactic polypropylene (iPP) is one of the most important and widely used methods to improve performance in the polypropylene industry. Aromatic heterocyclic phosphate salt is a kind of highly effective nucleating agent for iPP and one of the typical products is a compound nucleating agent based on 2, 2-methylene-bis (4, 6-di-tert-butylphenyl) phosphate hydroxyl aluminum (commercial product name: ADK NA-21). In this paper the isothermal crystallization kinetics of iPP nucleated with the α-nucleating agent NA-21, investigated using differential scanning calorimetry (DSC), is described with the crystallization data being analyzed by using the classic Avrami method. During isothermal crystallization the addition of nucleating agent NA-21 dramatically shortened the crystallization half time (t1/2) of iPP under the same conditions and the crystallization activation energy, ΔE, decreased from 422 kJ/mol for virgin iPP to 369 kJ/mol with the addition of NA-21. Thus, the addition of NA-21 significantly increased the crystallization rate of iPP.  相似文献   

16.
本文发现了Zn(II)离子掺杂可以加快聚乳酸的结晶过程. 测试了三种Zn(II)盐(ZnCl2、ZnSt和ZnOAc),并与其它离子Mg(II)和Ca(II)进行对照. FT-IR以及变温拉曼光谱分析发现,经Zn(II)离子掺杂后,聚乳酸的结晶度和结晶速率均增加,差示扫描量热技术以及X射线衍射分析也进一步证实. 差示扫描量热技术测定PLA/ZnSt-0.4 wt%材料的结晶率达到22.46%,PLA/ZnOAc-0.4 wt%材料的结晶率达到24.83%.  相似文献   

17.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

18.
Graphene (GN)-filled polylactic acid (PLA) nanocomposites were prepared through a solution blending method with GN weight percent ranging from 0.5 to 2?wt%. Rheological, melting and crystallization behaviors of the prepared PLA/GN nanocomposites were investigated by means of dynamic rheological measurements and differential scanning calorimetry (DSC). The shear viscosities of the PLA/GN nanocomposites decreased with increasing GN content, which was remarkably different from previous reports on the modifications using traditional nanofillers (e.g., clay, carbon nanotubes, etc.). The nonisothermal melt crystallization kinetic analysis suggested that GN served as a nucleating agent and could considerably promote the PLA’s crystallization through heterogeneous nucleation. Our findings suggested that at relatively low cooling rates (??≤?10?°C/min) even a small amount of GN promoted the nucleation and considerably increased the crystallization rate. However, the crystallinity began to decrease at higher cooling rates (e.g., ??≥?20?°C/min), especially when the GN content was high (e.g., 2?wt%), possibly owing to the GN aggregation effect considering PLA is a slowly crystallizing polymer.  相似文献   

19.
An 8 MeV electron-induced modification of Lexan polycarbonate (Lexan) films has been studied systematically using UV–visible spectroscopy, LCR meter, X-ray diffractogram (XRD) and differential scanning calorimetry (DSC) techniques. The optical properties of the Lexan films showed a decrease in the optical energy gap with an increase in the electron dose. The AC conductivity and dielectric constant were found to change significantly due to irradiation, and the dielectric constant was found to obey the universal law of dielectric constant. The XRD results show that the crystallite size and the percentage of crystallinity of films decrease after irradiation. The decrease in glass transition temperature shown by DSC studies reveals that the polymeric system has changed towards a more disordered state.  相似文献   

20.
Addition of a commercial available multiamide compound (N,N′,N′′-tricyclohexyl-1,3,5- benzenetricarboxylamide, defined here as TMC) into ecofriendly poly(lactic acid) (PLA) can accelerate the crystallization rate of the material remarkably and broaden its applications. In this paper, the nonisothermal crystallization behavior of biodegradable PLA nucleated by 0.3 wt.% of TMC was investigated by differential scanning calorimetry (DSC). The modified Avrami, Tobin, Ozawa, and Mo models were applied to describe the kinetics of the crystallization process. Various parameters of nonisothermal crystallization, such as the crystallization half-time and crystallization rate constant, reflected that TMC significantly accelerated the crystallization process. The activation energy values of the neat PLA and PLA/TMC blend, determined by the Kissinger method, increased with the addition of TMC. The study should be helpful for understanding the relationship between processing and properties of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号