首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline (2) that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine (1), which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2.  相似文献   

3.
Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5‐diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation en route to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. In vivo truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other gli pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP in vitro and abolished gliotoxin biosynthesis in vivo. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.  相似文献   

4.
Nigericin was among the first polyether ionophores to be discovered, but its biosynthesis remains obscure. The biosynthetic gene cluster for nigericin has been serendipitously cloned from Streptomyces sp. DSM4137, and deletion of this gene cluster abolished the production of both nigericin and the closely related metabolite abierixin. Detailed comparison of the nigericin biosynthetic genes with their counterparts in the biosynthetic clusters for other polyketides has prompted a significant revision of the proposed common pathway for polyether biosynthesis. In particular, we present evidence that in nigericin, nanchangmycin, and monensin, an unusual ketosynthase-like protein, KSX, transfers the initially formed linear polyketide chain to a discrete acyl carrier protein, ACPX, for oxidative cyclization. Consistent with this, deletion of either monACPX or monKSX from the monensin gene cluster effectively abolished monensin A biosynthesis.  相似文献   

5.
The aldol reaction is one of the most fundamental stereocontrolled carbon–carbon bond-forming reactions and is mainly catalyzed by aldolases in nature. Despite the fact that the aldol reaction has been widely proposed to be involved in fungal secondary metabolite biosynthesis, a dedicated aldolase that catalyzes stereoselective aldol reactions has only rarely been reported in fungi. Herein, we activated a cryptic polyketide biosynthetic gene cluster that was upregulated in the fungal wheat pathogen Parastagonospora nodorum during plant infection; this resulted in the production of the phytotoxic stemphyloxin II ( 1 ). Through heterologous reconstruction of the biosynthetic pathway and in vitro assay by using cell-free lysate from Aspergillus nidulans, we demonstrated that a berberine bridge enzyme (BBE)-like protein SthB catalyzes an intramolecular aldol reaction to establish the bridged tricyclo[6.2.2.02,7]dodecane skeleton in the post-assembly tailoring step. The characterization of SthB as an aldolase enriches the catalytic toolbox of classic reactions and the functional diversities of the BBE superfamily of enzymes.  相似文献   

6.
The biosynthesis of the fungal metabolite tenellin from Beauveria bassiana CBS110.25 was investigated in the presence of the epigenetic modifiers 5-azacytidine and suberoyl bis-hydroxamic acid and under conditions where individual genes from the tenellin biosynthetic gene cluster were silenced. Numerous new compounds were synthesized, indicating that the normal predominant biosynthesis of tenellin is just one outcome out of a diverse array of possible products. The structures of the products reveal key clues about the programming selectivities of the tenellin polyketide synthase.  相似文献   

7.
The biosynthetic gene cluster of the aureolic acid type antitumor drug chromomycin A3 from S. griseus subsp. griseus has been identified and characterized. It spans 43 kb and contains 36 genes involved in polyketide biosynthesis and modification, deoxysugar biosynthesis and sugar transfer, pathway regulation and resistance. The organization of the cluster clearly differs from that of the closely related mithramycin. Involvement of the cluster in chromomycin A3 biosynthesis was demonstrated by disrupting the cmmWI gene encoding a polyketide reductase involved in side chain reduction. Three novel chromomycin derivatives were obtained, named chromomycin SK, chromomycin SA, and chromomycin SDK, which show antitumor activity and differ with respect to their 3-side chains. A pathway for the biosynthesis of chromomycin A3 and its deoxysugars is proposed.  相似文献   

8.
Andrastins (andrastin A-D), produced by several Penicillium species, exhibit inhibitory activity against ras farnesyltransferase, suggesting that these compounds could be promising leads for antitumor agents. Although the genome sequence of Penicillium chrysogenum, an andrastin-producing species, is available, the genetic and molecular bases for the biosynthesis of andrastins have not been elucidated. Here we report the identification and characterization of the gene cluster for andrastin biosynthesis. We reconstituted the biosynthetic pathway in Aspergillus oryzae, a fungal expression host, by the co-expression of five genes, including that of a terpene cyclase, and of four genes encoding the tailoring enzymes, required for the generation of andrastins. Remarkably, we successfully obtained andrastin A, the most complex andrastin molecule, as the metabolite of nine gene products, thus confirming the potential of the fungal expression system to synthesize useful natural products.  相似文献   

9.
Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of 10 additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and 10 additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids.  相似文献   

10.
BACKGROUND: The non-proteinogenic amino acid p-hydroxyphenylglycine is a crucial component of certain peptidic natural products synthesized by a non-ribosomal peptide synthetase mechanism. In particular, for the vancomycin group of antibiotics p-hydroxyphenylglycine plays a structural role in formation of the rigid conformation of the central heptapeptide aglycone in addition to being the site of glycosylation. Initial labeling studies suggested tyrosine was a precursor of p-hydroxyphenylglycine but the specific steps in p-hydroxyphenylglycine biosynthesis remained unknown. Recently, the sequencing of the chloroeremomycin gene cluster from Amycolatopsis orientalis gave new insights into the biosynthetic pathway and allowed for the prediction of a four enzyme pathway leading to L-p-hydroxyphenylglycine from the common metabolite prephenate. RESULTS: We have characterized three of the four proposed enzymes of the L-p-hydroxyphenylglycine biosynthetic pathway. The three enzymes are encoded by open reading frames (ORFs) 21, 22 and 17 (ORF21: [PCZA361.1, O52791, CAA11761]; ORF22: [PCZA361. 2, O52792, CAA11762]; ORF17: [PCZA361.25, O52815, CAA11790]), of the chloroeremomycin biosynthetic gene cluster and we show they have p-hydroxymandelate synthase, p-hydroxymandelate oxidase and L-p-hydroxyphenylglycine transaminase activities, respectively. CONCLUSIONS: The L-p-hydroxyphenylglycine biosynthetic pathway shown here is proposed to be the paradigm for how this non-proteinogenic amino acid is synthesized by microorganisms incorporating it into peptidic natural products. This conclusion is supported by the finding of homologs for the four L-p-hydroxyphenylpyruvate biosynthetic enzymes in four organisms known to synthesize peptidic natural products that contain p-hydroxyphenylglycine. Three of the enzymes are proposed to function in a cyclic manner in vivo with L-tyrosine being both the amino donor for L-p-hydroxyphenylglycine and a source of p-hydroxyphenylpyruvate, an intermediate in the biosynthetic pathway.  相似文献   

11.
The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.  相似文献   

12.
13.
Streptomyces cinnamonensis DSM 1042 produces the polyketide-isoprenoid compound furanonaphthoquinone I (FNQ I) and isoprenylated phenazines, predominantly endophenazine A. However, the recently identified biosynthetic gene cluster for these compounds only contains a single gene for a mevalonate pathway enzyme, that is, a putative mevalonate kinase gene. This is in strong contrast to all Streptomyces strains examined so far, where all six genes encoding the mevalonate pathway enzymes are clustered in a single operon of 6.8 kb and, thus, raised the question about the biosynthetic origin of the isoprenoid moieties of FNQ I and endophenazine A. In this study, we investigated the incorporation of [13C2]acetate and [2-13C]glycerol into FNQ I and endophenazine A. The results unequivocally prove that the isoprenoid building blocks of both compounds are predominantly formed via the mevalonate pathway (approximately 80%) but that the MEP pathway (approximately 20%) contributes to the biosynthesis of these molecules, too. In actinomycetes, this is the first experimentally proven example of the utilization of both biosynthetic routes for the formation of one single secondary metabolite. The incorporation pattern of [2-13C]glycerol was consistent with a "reverse" prenyl transfer, that is, with the formation of a C-C bond from C-3 of GPP to the polyketide nucleus of FNQ I.  相似文献   

14.
15.
Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well.  相似文献   

16.
A new nitro-containing metabolite, spectinabilin, was isolated from the crude streptovaricin complex produced by Streptomyces spectabilis. The structure was determined by degradation studies and spectral properties. A possible biosynthetic pathway of the metabolite is discussed in relation to the biosynthesis of the streptovaricins.  相似文献   

17.
Cell suspension cultures of Arnebia euchroma were established from the friable callus on liquid Murashige and Skoog medium supplemented with 6-benzylaminopurine (10.0 μM) and indole-3-butyric acid (5.0 μM). Salicylic acid was used to study its effect on the enzymes which participate in shikonin biosynthesis with respect to metabolite (shikonin) content in the cell suspension culture of A. euchroma. In our study, phenylalanine ammonia lyase and PHB geranyltransferase were selected from the entire biosynthetic pathway. Results showed that phenylalanine ammonia lyase is responsible for growth and PHB geranyltransferase for metabolite production. Salicylic acid exhibited an inverse relationship with the metabolite content (shikonin); salicylic acid (100 μM) completely inhibited shikonin biosynthesis. The results presented in the current study can be successfully employed for the metabolic engineering of its biosynthetic pathway for the enhancement of shikonin, which will not only help in meeting its industrial demand but also lead to the conservation of species in its natural habitat.  相似文献   

18.
Yatakemycin (YTM), an antitumor natural product, represents the most potent member of a class of potent anticancer natural products including CC-1065 and duocarmycins. Herein we describe the biosynthetic gene cluster of YTM, which was identified by genome scanning of Streptomyces sp. TP-A0356. This cluster consists of 31 open reading frames (ORFs) and was localized to a 36 kb DNA segment. Moreover, its involvement in YTM biosynthesis was confirmed by cluster deletion, gene replacement, and complementation. Inactivation of ytkT, which encodes a radical S-adenosylmethionine (SAM) protein, created a mutant strain that failed to produce YTM but accumulated a new metabolite, which was structurally elucidated as a precursor that was related to the formation of the cyclopropane ring. More importantly, biochemical characterization of the radical SAM-dependent enzyme YtkT revealed that it is a novel C-methyltransferase and contributes to an advanced intermediate during formation of the cyclopropane ring through a radical mechanism in the YTM biosynthetic pathway. On the basis of in silico analysis, genetic experiments, structure elucidation of the novel intermediate, and biochemical characterization, a biosynthetic pathway for yatakemycin was proposed, which sets the stage to further investigate the novel enzymatic mechanisms and engineer the biosynthetic machinery for the production of novel analogues.  相似文献   

19.
20.
Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α-diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)-producing enzymes, implicating HYAA in α-diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2-electron oxidation of a hydrazonoacetyl intermediate is required for α-diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α-diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene-mediated biosynthetic transformations in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号