首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc ferrite nanocomposite was synthesized via thermal decomposition of zinc acetate and iron nitrate at three different temperatures (350, 450, and 550 °C). The influence of the thermal decomposition of precursors on the formation zinc ferrites was studied by differential thermal gravimetry and thermogravimetry (TG). The TG curve shows two steps for the thermal decomposition with mass loss of 17.3 % at 78 °C and 63.3 % at 315 °C. The prepared zinc ferrites nanocomposite was characterized by X-ray diffraction and scanning electron microscopy. The X-ray diffractograms of ZnFe2O4 shows that a crystalline phase, spinel system is formed. SEM micrograph of the zinc ferrite nanocomposite indicates the formation of uniformly spherical 48-nm nanograins. The properties of the zinc ferrite phase were strongly dependent on their calcinations temperature and molar ratio of precursors.  相似文献   

2.
The synthesis of monodisperse magnetic ferrite nanomaterials plays an important role in several scientific and technological areas. In this work, dibasic spinel MFe2O4 (M=Mg, Ni, Co, Fe, Mn) and polybasic spinel ferrite MCoFeO4 (M=Mg, Ni, Mn, MgNi) nanocrystals were prepared by the calcination of layered double hydroxide (LDH) precursors at 900 °C, which was confirmed by X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the as‐obtained spinel ferrites present a single‐crystalline nature with uniform particle size and good dispersibility. The composition, morphology, and particle size can be effectively tuned by changing the metal ratio, basicity, reaction time, and temperature of the LDH precursors. In addition, these spinel ferrites show high magnetic saturation values in the range 21.7–84.3 emu g?1, which maintain a higher level than the previously reported magnetic nanoparticles. Therefore, this work provides a facile approach for the design and fabrication of spinel ferrites with controllable nanostructure and improved magnetism, which could potentially be used in magnetic and biological fields, such as recording media, sensors, drug delivery, and intracellular imaging.  相似文献   

3.
Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel‐type ferrite nanoparticles MFe2O4 (M=Mg, Zn, Co, Ni). The best results for phase‐pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid‐phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase‐pure spinel‐type ferrite particles are thoroughly characterized by X‐ray diffraction, diffuse‐reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.  相似文献   

4.
The spinel ferrites MnFe2O4 nanowires were synthesized by hydrothermal route,porous MnFe2O4 and nanoparticles morphologies were synthesized by sol-gel method with egg white.The structures,morphologies,magnetic properties and adsorption properties of these obtained ferrites with different morphologies were studied contrastively.Results show that the obtained samples exhibit ferromagnetic properties.This realizes convenient magnetic separation from solution when they are used in the treatment of organic dyes ...  相似文献   

5.
This article presents a study on obtaining Ni, Zn ferrite starting from Fe(III), Ni (II), Zn (II) nitrates and some polyols: 1,2-propane diol, 1,3-propane diol and glycerol. While heating, a redox reaction takes place between nitrate anion and polyol, with formation of carboxylate type precursors. The obtained precursors have been investigated by thermal analysis, FT-IR spectrometry and atomic absorption spectroscopy. The thermal decomposition of the synthesized precursors up to 350 °C leads to the formation of Ni, Zn ferrite as unique phase, evidenced by XRD. The average diameter of the ferrite crystallites, estimated from XRD data, takes values within the range 20–50 nm, depending on the annealing temperature. Transmission Electron Microscopy has evidenced the obtaining of spherical, agglomerated nanoparticles. The magnetic properties of the synthesized samples, measured in cvasistatic magnetic field (50 Hz) are characteristic for the Ni, Zn ferrite nanoparticles, with narrow hysteresis cycle and values of the saturation magnetization <70 emu/g.  相似文献   

6.
Nanosized Zn(0.6)Cu(0.4)Cr(0.5)Fe(1.5-x)La(x)O(4) (x=0 - 0.06) ferrites doped with La are synthesized by a rheological phase reaction method. Polyaniline (PANI)/ferrite nanocomposites are prepared by in situ polymerization method. The structure, morphology and ferromagnetic property of ferrite powders and nanocomposites are characterized by X-ray powder diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared spectra (FTIR), UV-visible spectroscopy (UV), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The results indicate that the PANI and nanosized ferrite powders can be combined effectively. The polymers can reduce the agglomeration of nanosized ferrite particles to some extent, which is good for the dispersedness and stabilization of nanoparticles. The PANI/ferrite nanocomposites under applied magnetic field exhibit the hysteretic loops of the ferromagnetic nature. The magnetic properties of nanocomposites are tailored by controlling the ferrite content.  相似文献   

7.
镝掺杂铁氧体纳米晶的制备、表征和磁性   总被引:1,自引:0,他引:1  
蒋荣立  陈文龙  张宗祥  孙强  尹文萱 《化学学报》2008,66(11):1322-1326
采用化学共沉淀法制备出了镝掺杂铁氧体纳米晶, 利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅立叶红外光谱仪(FTIR)、古埃磁天平、振动样品磁强计(VSM)、X射线能谱仪(EDX)等仪器对产物进行了表征, 研究了Dy3+掺杂量对铁氧体纳米晶的结构、磁性和粒度的影响. 结果表明: 适量稀土元素镝离子的掺杂可以提高尖晶石型铁氧体的磁性、降低矫顽力, 当n(Fe3+)∶n(Dy3+)=14∶1时其磁性最强. Dy3+替代或充填进入了尖晶石晶格, 且主要占据B位. 掺杂了镝的铁氧体磁性纳米粒子粒度变小, 且分布更集中、均匀, 当Dy3+加入量为n(Fe3+)∶n(Dy3+)=14∶1时铁氧体纳米粒子的平均粒径由掺杂前的14 nm降低到到8 nm. 这种具有超顺磁性的软磁铁氧体纳米晶可应用于纳米磁液领域.  相似文献   

8.
The combustion and ultrasonic bath methods have been utilized to generate nickel spinel ferrite nanoparticles. Physical and chemical properties of generated nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Between the nanoparticles generated by mentioned methods, there were differences in size, oxygen-metal bonding, and magnetic properties which have been investigated in the work.  相似文献   

9.
Cobalt, copper, and nickel ferrite spinel nanoparticles have been synthesized by using a combination of sonochemical treatment and combustion. The magnetic nanoparticles have been used as supports to prepare ~4 wt% palladium catalysts. The ferrites were dispersed in an ethanolic solution of Pd(II) nitrate by ultrasonication. The palladium ions were reduced to metallic Pd nanoparticles, which were then attached to the surface of the different metal oxide supports. Thus, three different catalysts (Pd/CoFe2O4, Pd/CuFe2O4, Pd/NiFe2O4) were made and tested in the hydrogenation of 2,4-dinitrotoluene (DNT). A possible reaction mechanism, including the detected species, has been envisaged based on the results. The highest 2,4-diaminotoluene (TDA) yield (99 n/n%) has been achieved by using the Pd/NiFe2O4 catalyst. Furthermore, the TDA yield was also reasonable (84.2 n/n%) when the Pd/CoFe2O4 catalyst was used. In this case, complete and easy recovery of the catalyst from the reaction medium is ensured, as the ferrite support is fully magnetic. Thus, the catalyst is very well suited for applicationy in the hydrogenation of DNT or other aromatic nitro compounds.  相似文献   

10.
Nano-magnetic magnesium ferrite particles were synthesized by a simple and cost-effective method using different ratios between Mg/Fe precursors and fuel. Significant effects of these ratios on the crystalline phases, crystallite size, particle size, lattice constant, morphological and magnetic properties of the as-synthesized nano-particles have been investigated. Phase evolution, morphological and magnetic characteristics were determined by XRD, SEM, EDX and VSM techniques. The results obtained revealed that the as-prepared Mg ferrite nano-particles have the nanometer size and partially inverse spinel structure. Nano-structured magnesium ferrite spinel has been synthesized with various cyrystallite sizes ranging from 8 to 66 nm. Room temperature magnetization results showed that the magnetic properties of Mg ferrite nano-particles depend upon their size and crystallinity. The saturation magnetization for the sample having the highest crystallite size was 32.85 emu/g.  相似文献   

11.
Mn–Zn ferrites were obtained by the sol–gel autocombustion methods. The effect of the precursor used in the sol–gel autocombustion synthesis on the ferrite’s microstructure was examined. The as-obtained powders were characterized by XRD, FTIR, SEM, and TG/DTA. All ferrite powders obtained from different organic precursors, after gel autocombustion, were pure spinel phase, without secondary phases. The average crystallite size, estimated from Scherrer equation, was the smallest for ferrite obtained from a mixture of fuels/precursors (citric acid and EDTA). This ferrite powder has sponge-like microstructure with large pores, but it is less agglomerated than the material obtained from glycine as the fuel.  相似文献   

12.
Ferrites of composition M0.2Co0.4Zn0.4Fe2O4 with M = Cu2+, Mn2+ and Ni2+ were prepared by citrate complex method. Later, their composites with silica have also been obtained by a simple route. The citrate complex precursors of multielement ferrites were characterized by FTIR spectroscopy and thermal analysis, been found a similar behavior for the three systems. The thermal treatment (at 400, 600 and 800 °C) of precursors gives, as result, the spinel type cubic ferrite pure when the ions substituted were copper and nickel; when manganese was used an hematite phase was obtained as contaminant at 800 °C. The presence of all ions involved and the particle size was corroborated by EDX analysis and measured from a TEM micrograph, respectively. The magnetic parameters related to magnetic properties, magnetization and coercivity, were different depending of the chemical composition of the ferrite and the thermal treatment temperature, as it was expected. At room temperature, the values obtained were near to those reported for Co-ferrite in bulk. The synthesis route of the composites M0.2Co0.4Zn0.4Fe2O4-SiO2, proposed in this work, gives as result magnetic nanoparticles in an amorphous silica matrix. Their magnetic properties were depending on weight percentage of the magnetic phase in the composite.  相似文献   

13.
Nickel ferrite powders were synthesized by thermal decomposition of the precursors obtained in the redox reaction between the mixture of Ni(NO3)2·6H2O and Fe(NO3)3·9H2O with polyalcohol: 1,4-butanediol, polyvinyl alcohol and also with their mixture. During this reaction the primary C?COH groups were oxidized at ?CCOOH, while secondary C?COH groups at C=O groups. The carboxylic groups formed coordinate to the present Ni(II) and Fe(III) cations leading to carboxylate type compounds, further used as precursors for NiFe2O4. These precursors were characterized by thermal analysis and FT-IR spectrometry. All precursors thermally decomposed up to 350?°C leading to nickel ferrite weakly crystallized. By annealing at higher temperatures, nanocrystalline nickel ferrite powders were obtained, as resulted from XRD. SEM images have evidenced the formation of nanoparticulate powders; these powders present magnetic properties characteristic to the oxidic system formed by magnetic nanoparticles.  相似文献   

14.
Recent advances in the synthesis of various magnetic nanoparticles using colloidal chemical approaches are reviewed. Typically, these approaches involve either rapid injection of reagents into hot surfactant solution followed by aging at high temperature, or the mixing of reagents at a low temperature and slow heating under controlled conditions. Spherical cobalt nanoparticles with various crystal structures have been synthesized by thermally decomposing dicobalt octacarbonyl or by reducing cobalt salts. Nanoparticles of Fe-Pt and other related iron or cobalt containing alloys have been made by simultaneously reacting their constituent precursors. Many different ferrite nanoparticles have been synthesized by the thermal decomposition of organometallic precursors followed by oxidation or by low-temperature reactions inside reverse micelles. Rod-shaped iron nanoparticles have been synthesized from the oriented growth of spherical nanoparticles, and cobalt nanodisks were synthesized from the thermal decomposition of dicobalt octacarbonyl in the presence of a mixture of two surfactants.  相似文献   

15.
《Arabian Journal of Chemistry》2020,13(11):8100-8118
The synthesis of the Ni0.5-xZn0.5-xCu2xFe2O4 (x = 0; 0.10 and 0.15) ferrite with the differential of pilot-scale production by the combustion reaction method was investigated for RAM application purposes. Combustion temperatures ranging from 682 °C to 738 °C were observed. All ferrites were sintered at 1200 °C for 1 h. A comprehensive study of the influence of substitution with Cu2+ in a partial and proportional way to the Ni2+ and Zn2+ ions, doping mode little reported in the literature, and also of the sintering process over the structural, textural, morphological, magnetic and electromagnetic properties of NiZnCu ferrites was performed. The XRD patterns of the ferrites as synthesized revealed the formation of the cubic structure of the inverse spinel as majoritary phase, and traces of hematite and zinc oxide as segregated phases. After sintering, it was proven the single-phase formation of cubic spinel ferrite structure. The introduction of Cu led to a reduction in the lattice parameter, whose values ranged from 8.337 to 8.385 Å. The EDX results confirm the composition of oxides. The textural and morphological analyses confirmed the densest characteristic, with increase of particle size and reducing of surface area and pore volume after Cu-doping. All ferrites showed characteristics of soft ferrimagnetic material, where the increase in Cu content contributed to a slight reduction in saturation magnetization, whose values were of ~22–29 emu/g for the as synthesized ferrites and ~71–85 emu/g for the sintered ones. The best result of electromagnetic absorption in X-band was presented by the sintered ferrite with 0.3 mol of Cu, reaching an attenuation of 99.8% at 11.5 GHz frequency, thus confirming the efficiency of the pilot-scale combustion synthesis in obtaining a ferrite with great potential for RAM application.  相似文献   

16.
Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe M?ssbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic.  相似文献   

17.
The structure and crystal phase of the nanocrystalline powders of Ni1-xCdxFe2O4 (0≤x≤0.5) mixed ferrite, synthesized by wet chemical co-precipitation method, were characterized by X-ray diffraction. Results showed that the lattice parameter increased with increasing Cd concentration. Microstructure was studied by scanning electron microscopy. TG/DTA stud-ies were carried out on co-precipitated sulphate complexes. These studies revealed the low ferritization temperature (650 oC) of the ferrite system synthesized by presently adopted route of synthesis and occurrence of simultaneous decomposition and ferritization processes.Further studies by infrared spectroscopy were also conducted. Moreover, magnetic properties of the prepared nanoparticles were studied by magnetization and a.c. susceptibility mea-surements. The response of prepared Ni1-xCdxFe2O4 mixed ferrites to magnetic field was investigated. Results show that, magnetic susceptibility, Curie temperature, and effective magnetic moment decreased as the Cd content increases.  相似文献   

18.
Mechanical activation of zinc and nickel ferrites was shown to affect their physicochemical properties. For example, the temperature of magnetic transition of activated zinc ferrite sharply increased, while that of activated nickel ferrite decreased. Variation in the magnetic properties of ferrites is not due to their reversal degree, but is caused by transfer of cation from tetrahedral- to the vacant octahedral-sites in the spinel structure. The cations are randomly distributed on the octahedral-sites producing new exchange-bound pairs. The disordering of the anion and cation sublattices, leading eventually to the X-ray-amorphous structure, is thought to be due to the plastic deformations in the course of mechanical activation.  相似文献   

19.
Nano-crystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x = 0, 0.25, 0.5, 0.75 and 1), have been synthesized by the combustion route. The structural, morphological and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). X-ray analysis showed that the samples were cubic spinel. The increase in zinc concentration resulted in an increase in the lattice constant, unit cell volume, X-ray density, ionic radii, the distance between the magnetic ions and bond lengths on tetrahedral sites and octahedral sites of cubic spinel structure. Opposite behavior was observed for the average crystallite size of the as synthesized solids. The variation of saturation magnetization (Ms) value of the samples was studied. The maximum saturation magnetization value of the Coo.25Zn0.75Fe2O4 sample reached 76.87 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nano-crystalline magnetic ferrites for practical applications.  相似文献   

20.
In search of efficient ways to produce biodiesel under environmentally friendly conditions, catalytic reactions have been explored with emphasis on replacing homogeneous by heterogeneous catalysis with the use of new catalyst types, such as the spinel ferrites, which are described as a viable option, since they are stable, highly active, inexpensive, reusable, and allow the easy recovery of the reaction medium through the application of magnetic fields. In this context, the present work proposes to contribute to the consolidation of the catalytic viability of the Ni0.5Zn0.5Fe2O4 system obtained by combustion reaction, because although previous studies indicate the catalytic effectiveness of this system in polyphasic form, the present work seeks as differential to evaluate the influence of the secondary phases and magnetization of the Ni-Zn system in the conversion to biodiesel, and for this purpose, it aims to evaluate the catalytic effect of ZnO formed as secondary phase and obtained concomitantly in the Ni-Zn ferrite synthesis, besides evaluating the effect of the stirring mechanism used in biodiesel production reaction by the ethyl transesterification of soybean oil. The synthesized Ni-Zn ferrites and ZnO sample were characterized by X-ray diffraction (XRD), nitrogen adsorption textural analysis (BET), particle size distribution, and then, tested in two reactor types, one with magnetic stirring, and another of mechanical stirring, to observe the magnetization effect of the material, and the characterization of the obtained biodiesels by gas chromatography (GC) and acidity index. The performed catalytic tests showed that the Ni-Zn ferrites promoted excellent ester conversions with values near and above 94%, thus confirming that although ZnO also promotes good ester conversion (83.9%), the catalytic effectiveness of the Ni-Zn ferrite is evident and independent of secondary phases. Moreover, the catalytic tests performed in the magnetic stirring reactor using the Ni-Zn ferrites as catalysts made it possible to realize that their magnetic properties may be interference in the catalytic effectiveness, being this, a more determining factor than the surface characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号