首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionization of a beam of H2 Rydberg molecules in collision with a metal surface (evaporated Au or Al) is studied. The Rydberg states are excited in an ultraviolet-vacuum ultraviolet double-resonant process and are state selected with a core rotational quantum number N+=0 or 2 and principal quantum numbers n=17-22 (N+=2) or n=41-45 (N+=0). It is found that the N+=0 states behave in a very similar manner to previous studies with atomic xenon Rydberg states, the distance of ionization from the surface scaling with n2. The N+=2 states, however, undergo a process of surface-induced rotational autoionization in which the core rotational energy transfers to the Rydberg electron. In this case the ionization distance scales approximately with nu0(2), the effective principal quantum number with respect to the adiabatic threshold. This process illustrates the close similarity between field ionization in the gas phase and the surface ionization process which is induced by the field due to image charges in the metal surface. The surface ionization rate is enhanced at certain specific values of the field, which is applied in the time interval between excitation and surface interaction. It is proposed here that these fields correspond to level crossings between the N+=0 and N+=2 Stark manifolds. The population of individual states of the N+=2, n=18 Stark manifold in the presence of a field shows that the surface-induced rotational autoionization is more facile for the blueshifted states, whose wave function is oriented away from the surface, than for the redshifted states. The observed processes appear to show little dependence on the chemical nature of the metallic surface, but a significant change occurs when the surface roughness becomes comparable to the Rydberg orbit dimensions.  相似文献   

2.
Comprehensive theoretical calculations are reported for the dissociative recombination of the lowest vibrational level of the N(2) (+) ground state. Fourteen dissociative channels, 21 electron capture channels, and 48 Rydberg series including Rydberg states having the first excited state of the ion as core are described for electron energies up to 1.0 eV. The calculation of potential curves, electron capture and predissociation widths, cross sections and rate constants are described. The cross sections and rate constants are calculated using Multichannel Quantum Defect Theory which allows for efficient handling of the Rydberg series. The most important dissociative channel is 2(3)Π(u) followed by 4(3)Π(u). Dissociative states that do not cross the ion within the ground vibrational level turning points play a significant role in determining the cross section structure and at isolated energies can be more important than states having a favorable crossing. By accounting for autoionization, the interactions between resonances, between dissociative states, and between resonances and dissociative states it is found that the cross section can be viewed as a complex dissociative recombination spectrum in which resonances overlap and interfere. The detailed cross section exhibits a rapid variation in atomic quantum yields for small changes in the electron energy. A study of this rapid variation by future high resolution storage ring experiments is suggested. A least squares fit to the calculated rate constant from the ground vibrational level is 2.2+0.2-0.4×10(-7)×(T(e)/300)(-0.40)?cm(3)/sec for electron temperatures, T(e), between 100 and 3000 K and is in excellent agreement with experimentally derived values.  相似文献   

3.
Experimental and theoretical methodologies have been developed to determine the hyperfine structure of molecular ions from detailed studies of the Rydberg spectrum and have been tested on molecular hydrogen. The hyperfine structure in l=0-3 Rydberg states of H2 located below the X 2Sigmag+(v+=0,N+=1) ground state of ortho H2+ has been measured in the range of principal quantum number n=50-65 at sub-MHz resolution by millimeter wave spectroscopy following laser excitation to np and nd Rydberg states using a variety of single-photon and multiphoton excitation sequences. The np1(1), nd1(1), and the nf1(0-3) Rydberg states were found to be metastable and to have lifetimes of more than 5 micros beyond n=50. Members of other series, such as the nd1(2), nd1(3), and the np1(0) series, were found to have lifetimes of more than 1 mus. Local perturbations induced by low-n Rydberg states belonging to series converging on rovibrationally excited levels of H2+ reduce the lifetimes in narrow ranges of n values. The hyperfine structure is strongly dependent on the value of the orbital angular momentum l. In the penetrating s and p states at n approximately 50 the exchange interaction dominates over the hyperfine interaction and the levels can be labeled by the total electron spin angular momentum quantum number S (S=0 or 1). In the less penetrating d and f Rydberg states, the hyperfine interaction between the core nuclear and electron spins is larger than the exchange interaction and the Rydberg states are of mixed singlet and triplet character. A procedure based on the Stark effect and on the systematic analysis of selection rules and combination differences was developed to determine the orbital and the total angular momentum quantum numbers l and F and to construct an energy map of p and f Rydberg levels between n=54 and 64 with relative positions of an accuracy of better than 1 MHz. Multichannel quantum defect theory (MQDT) was extended to treat the hyperfine structure in molecular Rydberg states and was used to analyze the observed hyperfine structure of the p and f Rydberg states of H2. The frame transformation between the Born-Oppenheimer channels described by the angular momentum coupling scheme (abetaJ) and the asymptotic channels described by the (e[bbetaS+]) coupling scheme was derived and enables an elegant treatment of all intermediate coupling cases. Purely ab initio quantum defect theory reproduced the experimentally determined positions to within 40 MHz for the p levels and 13 MHz for the f levels. By slight adjustments of the quantum defect functions and their energy dependences and by consideration of the p-f interaction, of the singlet-triplet splittings of the f levels, and of the departure of the ionic levels from pure coupling case (bbetaS+), the agreement between theory and experiment could be improved to 600 kHz. By comparing the results of MQDT calculations of the hyperfine structure of f Rydberg levels with those of coupled equations calculations, the frame transformation approximation of MQDT was shown to be accurate to within 300 kHz. The extrapolated ionic hyperfine structure of the X 2Sigmag+(v+=0,N+=1) ionic level corresponds to the ab initio prediciton of Babb and Dalgarno [Phys. Rev. A 46, R5317 (1992)] within the experimental error.  相似文献   

4.
The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.  相似文献   

5.
Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.  相似文献   

6.
Intermediate states formed during the dissociative recombination of molecular ions with electrons can play significant roles in determining the magnitude of the total rate coefficient. These resonances are Rydberg states of two types, that is, they can have the ground or excited states of the ion as a core. Those with the excited cores have a fundamentally different excitation mechanism than those with the ground state core. The importance of excited core states in dissociative recombination has received only limited attention in the literature. Theoretical calculations on the dissociative recombination of N2+ are reported which compare the two types of resonances. Potential curves, electronic widths, cross sections, and rate coefficients are calculated for dissociative recombination along the 2(1)Sigma(g)+ state, one of several routes for the dissociative recombination of N2+. The ground core resonances, in this example, are relatively unimportant compared to those with the excited core. Inclusion of the excited core resonances increases the rate coefficient by about a factor of 4 at room temperature, but the increase is not enough to establish 2(1)Sigma(g)+ as the dominant dissociative route.  相似文献   

7.
Indirect dissociative recombination of low-energy electrons and molecular ions often occurs through capture into vibrationally excited Rydberg states. Properties of vibrational autoionization, the inverse of this capture mechanism, are used to develop some general ideas about the indirect recombination process, and these ideas are illustrated by examples from the literature. In particular, the Δv = -1 propensity rule for vibrational autoionization, i.e., that vibrational autoionization occurs by the minimum energetically allowed change in vibrational quantum numbers, leads to the prediction of thresholds in the dissociative recombination cross sections and rates at the corresponding vibrational thresholds. Capture into rotationally excited Rydberg states is also discussed in terms of recent low-temperature studies of the dissociative recombination of H(3)(+).  相似文献   

8.
在单光子29000~40000cm^-1。能量范围内,获得亚稳态4p55s[3/2]2和4p^5s’[1/2]oKr原子向其4p5npr[3/2]1.2,[1/2]1和4p5nfr[5/2]3序列自电离Rydberg态跃迁的共振增强激发光谱,光谱线宽≈0.1cm^-1.这些偶宇称自电离态的激发谱呈现明显的不对称线形,如此高分辨的激发谱大部分是首次报道.根据Fano线形关系对激发谱进行系统地分析,获得许多新的系统的能级位置、量子亏损、线性因子、共振宽度、共振态寿命和衰减宽度等数据,基于实验拟合所得的系统参数,我们发现线形因子和共振宽度相对有效量子数呈线性关系.另外还分析了4p^5np'序列的能级间距.  相似文献   

9.
The Rydberg spectra of CaF combine the simplicity of a single electron outside a doubly closed-shell Ca2+F- ion core with the exceptional polarity of the ion core. A global multichannel quantum defect (MQDT) fit to 612 previously assigned levels, 507 from n approximately = 12-18, N=0-14, v+=1, 97 from n approximately = 9-10, N=0-14, v+=2, and 8 from n approximately = 7, N=3-10, v+=3, produces the complete L=0-3 quantum defect matrix mu (with the exception of one element) and 19 of 20 elements of the partial differentialmu/differentialR matrix, as well as the molecular constants of the CaFX 1sigma+ state [omega(e)+=694.58(14), omega(e)x(e+)=2.559(40), B(e+)=0.373 07(16) cm(-1), and the v=0, N=0 to v(+)=0, N(+)=0 ionization energy, 46,996.40(8) cm(-1)]. This experimentally determined mu(R) matrix is unusual in the completeness of its representation of the spectrum of both core-penetrating and nonpenetrating Rydberg series, including both local perturbations and vibrational autoionization rates, as well as all dynamical processes encoded in the spectrum that result from the scattering (at negative energy) of the Rydberg electron off the Ca2+F- ion core. The MQDT theory is presented in a form that clarifies the relationships of the reaction (K) and phase (P) matrices of MQDT to effective Hamiltonian models for local interactions between accidentally near degenerate levels. In particular, a Hund's case (b) like representation of the Hamiltonian is described in which the rovibronic K matrix is diagonalized and the P matrix, which contains information about the v+, N+ eigenstates of the ion, becomes nondiagonal.  相似文献   

10.
Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.  相似文献   

11.
The 3pπD?(1)Π(u) state of the H(2) molecule was reinvestigated with different techniques at two synchrotron installations. The Fourier transform spectrometer in the vacuum ultraviolet wavelength range of the DESIRS beamline at the SOLEIL synchrotron was used for recording absorption spectra of the D?(1)Π(u) state at high resolution and high absolute accuracy, limited only by the Doppler contribution at 100 K. From these measurements, line positions were extracted, in particular, for the narrow resonances involving (1)Π(u) (-) states, with an accuracy estimated at 0.06?cm(-1). The new data also closely match multichannel quantum defect calculations performed for the Π(-) components observed via the narrow Q-lines. The Λ-doubling in the D?(1)Π(u) state was determined up to v=17. The 10 m normal incidence scanning monochromator at the beamline U125/2 of the BESSY II synchrotron, combined with a home-built target chamber and equipped with a variety of detectors, was used to unravel information on ionization, dissociation, and intramolecular fluorescence decay for the D?(1)Π(u) vibrational series. The combined results yield accurate information on the characteristic Beutler-Fano profiles associated with the strongly predissociated Π(u) (+) parity components of the D?(1)Π(u) levels. Values for the parameters describing the predissociation width as well as the Fano-q line shape parameters for the J=1 and J=2 rotational states were determined for the sequence of vibrational quantum numbers up to v=17.  相似文献   

12.
We have studied the dissociative ionization behavior of Na2 molecules using two-color, three photon optical-optical double resonance enhanced excitation via the A(1)Sigma(u)(+) and the 2(1)Pi(g) states. Excess energy ranges from about 150 to about 1500 cm(-1) above threshold for dissociative ionization into ground-state Na and Na(+). Slow atomic Na(+) fragments and Na2(+) molecular ions are detected using a linear time-of-flight spectrometer operated in low field extraction, core sampling mode. To explain the observed energy dependence of the Na(+)/Na2(+) branching ratio, we introduce a semiclassical model for the underlying decay dynamics. Franck-Condon overlap densities for bound-free transitions starting in 2(1)Pi(g) vibrational levels indicate that atomic Na(+) fragments are primarily produced via Rydberg states, with principal quantum number n between 5 and 12, converging to the repulsive 1(2)Sigma(u)(+) first excited-state potential of Na2(+). Dynamics along these Rydberg curves involves competition between electronic (autoionizing) and nuclear (dissociative) degrees of freedom. Within the model, the autoionization lifetime tau auto is the only one free parameter available to fit calculated Na(+)/Na2(+) branching ratios as a function of excess energy to the observed values. The lifetime is assumed to be the same multiple c of the Bohr period of each Rydberg potential. A chi(2)-minimization procedure yields, for the range of principal quantum numbers involved, a most likely value of c = 1.5 +/- 0.3, implying that on average the Rydberg electron completes only 1 to 2 orbits before interaction with the excited core electron leads to autoionization.  相似文献   

13.
The vacuum ultraviolet(VUV)pulsed field ionization-photoelectron( PFI-PE)spectrum for trichloroethene(ClCH=CCl2)has been measured in the energy range of 76400-79650 cm-1 . The vibrational bands resolved in the VUV-PFI-PE spectrum are assigned based on ab initio vibrational frequencies and calculated Franck-Condon factors for the ionization transitions,yielding eleven vibrational frequencies for ClCH=CCl2+:v1+=148 cm-1,v2+= 80 cm-1,v3+=286 cm-1,v4+=402 cm-1,v5+= 472 cm-1,v6+=660 cm-1,v7+=875 cm-1,v8+=990 cm-1,v9+=1038 cm-1,v10+=1267 cm-1,and v11+=1408 cm-1. These measurements along with the frequency v12+=3073 cm-1 determined in the recent VUV-infrared photo-induced ionization study have provided the complete set of twelve experimental vibrational frequencies for ClCH = CCl2+ in its ground electronic state. On the basis of the spectral simulation of the origin VUV-PFI-PE vibrational band,we have determined the IE(ClCH=CCl2)to be(76441.7±2.0)cm-1((9.4776±0.0002)eV).  相似文献   

14.
《Progress in Surface Science》2007,82(4-6):293-312
The decay rates of electron and hole excitations at metal surfaces as determined by a scanning tunnelling microscope are presented and discussed. Surface-localised electron states as diverse as Shockley-type surface states and quantum well states confined to ultrathin alkali metal adsorption layers are covered. Recent developments in the analysis of the experimental procedures that are used to determine decay rates with the scanning tunnelling microscope, namely the analysis of line shapes and the spatial decay of standing wave patterns, are discussed.  相似文献   

15.
We have obtained a rotationally resolved vacuum ultraviolet pulsed ˉeld ionization-photoelectron (VUV-PFI-PE) spectrum of H2 in the energy range of 15.30-18.09 eV, covering the ionization transitions H2+(X2§+g ,v+=0-18, N+=0-5)?H2(X1§+g , v00=0, J00=0-4). The assignment of the rotational transitions resolved inthe VUV-PFI-PE vibrational bands for H2+(X2§+g , v+=0-18) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Only the ¢N=N+?J00=0 and §2 rotational branches are observed in the VUV-PFI-PE spectrum of H2. However, the vibrational band is increasingly dominated by the 4N=0 rotational branch as v+ is increased. The BOS simulation reveals that the perturbation of VUV-PFI-PE rotational line intensities by near-resonance autoionizing Rydberg states is minor at v+?6 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for H2+(v+?6) presented here providereliable estimates of state-to-state cross sections for direct photoionization of H2, while the rotationally resolved PFI-PE bands for H2+(v+·5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the VUV-PFI-PE spectrum of H2, the ionization energies for the formation of H2+(X2§+g , v+=0-18, N+=0-5) from H2+(X1§+g , v00=0,J00=0-4), the vibrational constants (!e, !e?e, !eye, and !eze), the rotational constants (Bv+, Dv+, Be,and ?e), and the vibrational energy spacings ¢G(v++1/2) for H2+(X2§+g , v+=0-18) are determined. With a signiˉcantly higher photoelectron energy resolution achieved in the present study, the precisions of these spectroscopic values are higher than those obtained in the previous photoelectron studies. As expected, the spectroscopic results for H2+(X2§+g , v+=0-18) derived from this VUV-PFI-PE study are in excellent agreement with high-level theoretical predictions.  相似文献   

16.
This paper reports a study of resonant dissociative electron attachment (DEA) to the phenol, chlorobenzene, p-, m-, and o-chlorophenol molecules. On the basis of spectroscopic and thermochemical approaches the resonant states of the molecular negative ions (NIs) and the structures of some dissociative decay products are assigned. In the electron energy range up to 3 eV, DEA processes are determined by the two 2[pi*]-shape resonances resulting mainly in formation of [M-H]- and/or Cl- ions. At higher electron energies the energy correlation between peaks in the negative ion effective yield curves and bands of UV spectra allowed identification of the core-excited resonances. The peculiarities of Cl- ion formation and the vibrational fine structure on the effective yield curves of the [M-H]- ions are discussed. The mass spectrometric procedures for measurement of relative cross sections for NI formation are described.  相似文献   

17.
A full quantum theoretical model is proposed to study the νO–H experimental IR line shapes of polarized crystalline glutaric and 1-naphthoic acid dimer crystals at room and liquid nitrogen temperatures. This work is an application of a previous model [M. E-A. Benmalti, D. Chamma, P. Blaise, and O. Henri-Rousseau, J. Mol. Struct. 785 (2006) 27–31] by accounting for Fermi resonances. The approach is dealing with the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two νO–H modes and the quantum direct and indirect relaxation.Numerical results show that mixing of all these effects allows to reproduce satisfactorily the main features of the experimental IR line shapes of crystalline hydrogenated and deuterated glutaric and 1-naphthoic acid crystals and are expected to provide efficient of Fermi resonances effects.  相似文献   

18.
The even-parity autoionizing resonance series 5p5np'[3/2]1, [1/2]1, and 5p5nf'[5/2]3 of xenon have been investigated, excited from the two metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in the photon energy range of 28000-42000 cm-1 with experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p5np' autoionizing resonances is discussed.  相似文献   

19.
Double-resonance laser excitation and high-resolution energy dispersive photoelectron spectroscopy were used to determine the ionic rotational-state distributions following vibrational autoionization of Rydberg states of water having principal quantum number n=8-10 and converging to the X (2)B(1) (1,0,0) state of H(2)O(+). Where possible, these states were identified by comparison with results of a calculation based on multichannel quantum defect theory. Symmetry and angular momentum constraints link the observed ionic rotational states to particular values of the orbital angular momentum of the Rydberg electron, l, and to the partial-wave composition of the ejected electron. In particular, this connection allows an unambiguous determination of the even or odd character of the partial waves and provides a test of the predicted character of the autoionizing resonances. The effects of l mixing induced by the nonspherical nature of the ionic field are plainly evident in the ion distributions. The present results also allow a tentative assignment of some resonances to the previously unidentified np Rydberg states.  相似文献   

20.
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S(N)2) reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号