首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The participation of electrolyte cations in the adsorption of bovine serum albumin (BSA) onto polymer latices was investigated. The latices used were hydrophobic polystyrene (PS), and hydrophilic copolymers, i.e., styrene (St)/2-hydroxyethyl methacrylate(HEMA) copolymer [P(St/HEMA)] and styrene/acrylamide (AAm) copolymer [P(St/AAm)]. Three kinds of electrolyte cations (Na+, Ca2+, Mg2+) were used as the chloride. The amount of BSA adsorbed in every cation medium showed a maximum near the isoelectric point (iep, pH about 5) of the protein. The amounts of BSA adsorbed onto copolymer latices (except in the acidic pH region lower than the iep) were considerably smaller than that onto PS latex because of the steric repulsion and the decrease in the hydrophobic interaction between BSA and copolymer latices. In the acidic pH region, there was little difference in the amount of BSA adsorbed in every cation medium. However, in the pH region higher than the iep, the amounts of BSA adsorbed (particularly onto PS latex) in divalent cations (Ca2+ and Mg2+) media were relatively greater compared with that in a monovalent (Na+) one. This result was interpreted on the basis of the differences in such effects of electrolyte cations as dehydration power, suppression of the electrostatic repulsion, and binding affinity to BSA molecule. Ion Chromatographic estimation of the amounts of electrolyte cations captured upon BSA adsorption (in pH > 5) revealed that divalent cations were incorporated into the contact interface between the latex and BSA molecule so as to prevent the accumulation of anion charge and facilitate the protein adsorption.  相似文献   

2.
3.
Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca(2+) counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca(2+) counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca(2+) counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca(2+) counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca(2+)-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.  相似文献   

4.
Ion current rectification (ICR) in negatively charged conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. A numerical simulation based on the coupled Poisson and Nernst-Planck (PNP) equations is proposed to solve the ion distribution and ionic flux in the charged and structurally asymmetric nanofluidic channel with diffusive ion flow. Simulation results qualitatively describe the diffusion-induced ICR behavior in conical nanopores suggested by the experimental data. The concentration-gradient-dependent ICR enhancement and inversion is attributed to the cooperation and competition between geometry-induced asymmetric ion transport and the diffusive ion flow. The present study improves our understanding of the ICR in asymmetric nanofluidic channels associated with the ion concentration difference and provides insight into the rectifying biological ion channels.  相似文献   

5.
Effect of the local anesthetics dibucaine, tetracaine, lidocaine and procaine on the water permeability of phospholipid membrane was examined using liposomes composed of bovine heart cardiolipin and egg yolk phosphatidylcholine in a molar ratio of 2/98 by monitoring the osmotic shrinkage of liposomes in hypertonic glucose solution at pH 7.3 and 30 degrees C. These local anesthetics greatly accelerated the water permeability by destabilizing the membrane structure. The effect was found to be governed by the hydrophobicity of the anesthetics. There was also a significant correlation between the membrane destabilizing actions and the anesthetic activities.  相似文献   

6.
7.
Iron and copper present as humic and other negatively charged colloids are studied by sorption on indium-treated XAD-2 resin and DEAE-Sephadex A-25 anion exchanger and by filtration. The iron species include colloidal particles consisting of hydrated iron(III) oxide, clay and humic substances and smaller amounts of hydrated iron(III) oxide-clay or -silica aggregates, whereas most of the copper exists as humic complexes.  相似文献   

8.
Water molecules confined to pores with sub-nanometre diameters form single-file hydrogen-bonded chains. In such nanoscale confinement, water has unusual physical properties that are exploited in biology and hold promise for a wide range of biomimetic and nanotechnological applications. The latter can be realized by carbon and boron nitride nanotubes which confine water in a relatively non-specific way and lend themselves to the study of intrinsic properties of single-file water. As a consequence of strong water-water hydrogen bonds, many characteristics of single-file water are conserved in biological and synthetic pores despite differences in their atomistic structures. Charge transport and orientational order in water chains depend sensitively on and are mainly determined by electrostatic effects. Thus, mimicking functions of biological pores with apolar pores and corresponding external fields gives insight into the structure-function relation of biological pores and allows the development of technical applications beyond the molecular devices found in living systems. In this Perspective, we revisit results for single-file water in apolar pores, and examine the similarities and the differences between these simple systems and water in more complex pores.  相似文献   

9.
Electron-phonon interactions in the monoanions of polyacetylenes such as C2H4 (2tpa), C4H6 (4tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied and compared with those in the monoanions of polyacenes. The C-C stretching A(g) modes around 1500 cm(-1) the most strongly couple to the lowest unoccupied molecular orbitals (LUMO) in polyacetylenes. The estimated total electron-phonon coupling constants for the monoanions (l(LUMO)) are 0.579, 0.555, 0.463, and 0.401 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l(LUMO) values for polyacetylenes are much larger than those for polyacenes. Furthermore, the l(LUMO) value for polyacetylene with C(2h) geometry is estimated to be 0.254 eV, and is larger than that (0.024 eV) for polyacene with D(2h) geometry. The phase patterns difference between the LUMO of polyacenes localized on the edge part of carbon atoms, and the delocalized LUMO of polyacetylenes is the main reason for the calculated results. The single charge transfer through the molecule in polyacetylenes are also discussed. The reorganization energies between the neutral molecule and the corresponding monoanion are estimated to be 0.164, 0.144, 0.125, and 0.113 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. Such reorganization energy decreases with an increase in molecular size. The conditions under which the attractive electron-electron interactions are realized in the monoanions of polyacetylenes and polyacenes are discussed. In terms of the electron-phonon interactions and the reorganization energies, the relationships between the normal and possible superconducting states are briefly discussed. We find that the monoanions with smaller molecular size cannot easily become good conductors, however, the conditions under which the interactions between two electrons are attractive are more easily realized in the monoanions with smaller molecular size than in the monoanions with larger molecular size.  相似文献   

10.
The authors have addressed theoretically the hydrodynamic effect on the translocation of DNA through nanopores. They consider the cases of nanopore surface charge being opposite to the charge of the translocating polymer. The authors show that, because of the high electric field across the nanopore in DNA translocation experiments, electro-osmotic flow is able to create an absorbing region comparable to the size of the polymer around the nanopore. Within this capturing region, the velocity gradient of the fluid flow is high enough for the polymer to undergo coil-stretch transition. The stretched conformation reduces the entropic barrier of translocation. The diffusion limited translocation rate is found to be proportional to the applied voltage. In the authors' theory, many experimental variables (electric field, surface potential, pore radius, dielectric constant, temperature, and salt concentration) appear through a single universal parameter. They have made quantitative predictions on the size of the adsorption region near the pore for the polymer and on the rate of translocation.  相似文献   

11.
Heat capacity of controlled amounts of water in Vycor's 2 nm radius pores has been determined in real time during the course of water's isothermal nanoconfinement from bulk state at 358 K, by using temperature-modulated calorimetry. As water transfers from bulk to nanopores via the vapor phase, its heat capacity per molecule increases asymptotically toward a limiting value of 1.4 times the heat capacity of bulk water for 1.8 wt % water in Vycor and 1.04 times for 10.0 wt %. The observations indicate that vibrational and configurational contributions to the heat capacity are highest when the amount of water is insufficient to completely cover the pore wall, and they decrease as more water is present in the nanopores and water clusters form. The heat capacity of water in completely filled nanopores approaches the value for bulk water, thus indicating that the heat capacity varies with the water molecules' position in the nanopores.  相似文献   

12.
A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.  相似文献   

13.
The influence of relatively low molecular weight polypeptides on the structure of membrane vesicles composed of distearyldimethylammoniumchloride (DSACl) was investigated by means of calorimetric, fluorescence spectroscopic and fluorescence polarization measurements, and correlated with the degree of hydrophobicity and/or dissociation of the polypeptide side chains. The polypeptides used were poly(-methyl L-glutamate) (PMLG,M v =4400), copoly(methyl L-glutamate L-glutamic acid) containing 20 mol % of L-glutamic acid (80/20 MG/GA,M v =4200) and poly(L-glutamic acid) (PLGA,M v =9200). The hydrophobic polypeptide, PMLG, was readily incorporated into the DSACl membrane vesicles to form membrane-spanning helices, resulting in a decrease in the microviscosity of the hydrophobic region of the membrane phase. The partially charged hydrophobic polypeptide, 80/20 MG/GA, was almost insoluble into the membrane below the phase transition temperature of the DSACl vesicle,T c 40.4 °C, however, the solubility of the copolymer into the membrane was drastically increased aboveT c . The negatively charged polypeptide, PLGA, can hardly penetrate through the membrane vesicle and formed crosslinking between the positively charged DSACl vesicles. It was also confirmed that aggregation or clustering of the hydrophobic PMLG-helices progressed in the membrane phase belowT c .  相似文献   

14.
Electrodes for the dopamine (DA) determination in biological samples have been developed with improved selectivity and sensitivity in an excess of ascorbic acid (AA). Negatively charged Ni(II) complex was synthesized and electropolymerized on the glassy carbon electrode to impart the surface with anionic characteristics that could act both as a catalyst and as a discriminating layer against AA based on the electrostatic interaction. Thus prepared electrodes enabled selective determination of DA even in a large excess of AA by differential pulse voltammetry at physiological pH. Linear response was found down to 1.0 x 10(-7) M with 5.0 x 10(-9) M of LOD (Limit of Detection). In a flow injection analysis performed in an amperometric mode, the detection limit was lowered by two orders of magnitude down to 1.0 x 10(-9) M with a linear range of 1.0 x 10(-9) to 1.0 x 10(-6) M. The relative standard deviation was found to be 3.36% from 25 independent measurements for 1.0 x 10(-5) M of DA. Stable oxidation current of DA was observed even after 30 days storage in air. The recoveries of DA in the 100-fold diluted human urine samples were 97.7% for 4 measurements. The rate constant for the DA oxidation was 1.3 x 10(-3) cm s(-1) from hydrodynamic experiments using a rotating disk electrode.  相似文献   

15.
In an attempt to shed light on the mechanism by which gaseous samples of negatively charged oligonucleotides undergo extremely slow (i.e., over 1-1000 s) charge loss, we have carried out molecular dynamics simulations on an oligonucleotide anion, T(5)(3-), containing five thymine, deoxyribose, and phosphate units in which the first, third, and fifth phosphates are negatively charged. The study is aimed at determining the rate at which an electron is detached from such a trianion by way of an internal Coulomb repulsion induced event. In this process, the intrinsic 5.0-5.1 eV electron binding strength of each phosphate site is reduced by the repulsive Coulomb potentials of the other two negative sites. As geometrical fluctuations cause the distances among the three negative phosphate sites to change, this causes the Coulomb repulsion energies at these sites to fluctuate. Once the Coulomb potential at any phosphate site exceeds ca. 5 eV, the electron on that site is able to undergo autodetachment. Although such an electron must tunnel through a barrier to escape, it is shown that the tunneling rate is not the rate-limiting step in electron loss; instead, it is the rate at which geometrical fluctuations cause the Coulomb potentials to exceed 5 eV that determines the rate of electron loss. Because these rates are extremely slow, special techniques had to be introduced to allow results of dynamics simulations on more flexible models of T(5)(3-) to be extrapolated to predict the behavior of the actual T(5)(3-).  相似文献   

16.
Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.  相似文献   

17.
A field theoretic variational approach is introduced to study ion penetration into water-filled cylindrical nanopores in equilibrium with a bulk reservoir [S. Buyukdagli, M. Manghi, and J. Palmeri, Phys. Rev. Lett. 105, 158103 (2010)]. It is shown that an ion located in a neutral pore undergoes two opposing mechanisms: (i) a deformation of its surrounding ionic cloud of opposite charge, with respect to the reservoir, which increases the surface tension and tends to exclude ions from the pore, and (ii) an attractive contribution to the ion self-energy due to the increased screening with ion penetration of the repulsive image forces associated with the dielectric jump between the solvent and the pore wall. For pore radii around 1 nm and bulk concentrations lower than 0.2 mol/l, this mechanism leads to a first-order phase transition, similar to capillary "evaporation," from an ionic-penetration state to an ionic-exclusion state. The discontinuous phase transition exists within the biological concentration range (~0.15 mol/l) for small enough membrane dielectric constants (ε(m) < 5). In the case of a weakly charged pore, counterion penetration exhibits a nonmonotonic behavior and is characterized by two regimes: at low reservoir concentrations or small pore radii, coions are excluded and counterions enter the pore to enforce electroneutrality; dielectric repulsion (image forces) remain strong and the counterion partition coefficient decreases with increasing reservoir concentration up to a characteristic value. For larger reservoir concentrations, image forces are screened and the partition coefficient of counterions increases with the reservoir concentration, as in the neutral pore case. Large surface charge densities (>2 × 10(-3) e/nm(2)) suppress the discontinuous transition by reducing the energy barrier for ion penetration and shifting the critical point toward very small pore sizes and reservoir concentrations. Our variational method is also compared to a previous self-consistent approach and yields important quantitative corrections. The role of the curvature of dielectric interfaces is highlighted by comparing ionic penetration into slit and cylindrical pores. Finally, a charge regulation model is introduced in order to explain the key effect of pH on ionic exclusion and explain the origin of observed time-dependent nanopore electric conductivity fluctuations and their correlation with those of the pore surface charge.  相似文献   

18.
Solutions of negatively charged graphene sheets and ribbons   总被引:1,自引:0,他引:1  
Negatively charged graphene layers from a graphite intercalation compound spontaneously dissolve in N-methylpyrrolidone, without the need for any sonication, yielding stable, air-sensitive, solutions of laterally extended atom-thick graphene sheets and ribbons with dimensions over tens of micrometers. These can be deposited on a variety of substrates. Height measurements showing single-atom thickness were performed by STM, AFM, multiple beam interferometry, and optical imaging on Sarfus wafers, demonstrating deposits of graphene flakes and ribbons. AFM height measurements on mica give the actual height of graphene (ca. 0.4 nm).  相似文献   

19.
The friction between two polyelectrolyte gels carrying the same or opposite sign of charges has been investigated using a rheometer. It is found that the friction was strongly dependent on the interfacial interaction between two gel surfaces. In the repulsive interaction case, especially, the friction was extremely low. The friction behavior is attempted to be described in terms of the hydrodynamic lubrication of the solvent layer between two like-charged gel surfaces, which is formed due to the electrostatic repulsion of the two gel surfaces. From the theoretical analysis (hydrodynamic mechanism), the friction behaviors were explained qualitatively, all of the experimental results, nevertheless, could not be understood well. The viscoelastic feature of the gel and the non-Newtonian behavior of water at the friction interface are considered to be important to elucidate the gel friction.  相似文献   

20.
To study vicinal water structure around polystyrene latex particles differential thermal analysis (DTA) has been utilized. Measurements of programmable water thermodesorption from polystyrene surfaces under dynamic and quasiisothermal conditions were made. Therefore, the adsorption potential distribution function was calculated and the hydrophobicity of polystyrene surfaces determined. DTA is presented as a useful method to study the interfacial properties of polymer colloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号