首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors time resolve molecular motion in bound state, ionic potentials that leads to bond cleavage during the interaction with intense, ultrafast laser fields. Resonances in molecular ions play an important role in dissociative ionization with ultrafast laser fields, and the authors demonstrate how these resonances evolve in time to produce dissociation after initial strong-field ionization. Exploiting such dynamic resonances offers the possibility of controlled bond breaking and characterizing time-dependent molecular structure.  相似文献   

2.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

3.
Intermediate states formed during the dissociative recombination of molecular ions with electrons can play significant roles in determining the magnitude of the total rate coefficient. These resonances are Rydberg states of two types, that is, they can have the ground or excited states of the ion as a core. Those with the excited cores have a fundamentally different excitation mechanism than those with the ground state core. The importance of excited core states in dissociative recombination has received only limited attention in the literature. Theoretical calculations on the dissociative recombination of N2+ are reported which compare the two types of resonances. Potential curves, electronic widths, cross sections, and rate coefficients are calculated for dissociative recombination along the 2(1)Sigma(g)+ state, one of several routes for the dissociative recombination of N2+. The ground core resonances, in this example, are relatively unimportant compared to those with the excited core. Inclusion of the excited core resonances increases the rate coefficient by about a factor of 4 at room temperature, but the increase is not enough to establish 2(1)Sigma(g)+ as the dominant dissociative route.  相似文献   

4.
Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.  相似文献   

5.
Optical-optical-optical triple resonance spectroscopy isolates transitions to vibrationless Rydberg states of BH with principal quantum numbers from n=7 to 50. Corresponding resonances appear in the excitation spectrum of excited boron atoms produced by the dissociative relaxation of these states. The decay to neutral products occurs on a nanosecond time scale. Yet, corresponding resonances show Fano coupling widths that approach 1 cm-1. Above threshold, spontaneous ionization dominates, but line shapes match for resonances with the same electron orbital quantum numbers built on v+=0 and v+=1 cores. This striking feature-for-feature similarity in predissociation and autoionization line shapes affirms that inelastic electron-cation scattering pathways leading to electron ejection and dissociative recombination proceed through a common continuum.  相似文献   

6.
We have studied gas-phase collisions between slow electrons and uracil molecules with a view to understanding the resonance structure of the scattering cross section. Our symmetry-resolved results for elastic scattering, computed in the fixed-nuclei, static-exchange and static-exchange-plus-polarization approximations, provide locations for the expected pi* shape resonances and indicate the possible presence of a low-energy sigma* resonance as well. Electron-impact excitation calculations were carried out for low-lying triplet and singlet excitation channels and yield a very large singlet cross section. We discuss the connection between the resonances found in our elastic cross section and features observed in dissociative attachment.  相似文献   

7.
We report the photon-stimulated desorption of negative ions induced by direct dipolar dissociation and dissociative electron attachment. The photon-stimulated desorption of F(-) ions from CF(3)Cl physisorbed on a Si(111)-7x7 surface at 30 K in the photon energy range 12-35 eV was studied. The F(-) ion yield exhibits four resonances, at 12.8, 16.2, 19.5, and 22.3 eV, quite unlike the gas phase photodissociation cross section. The intensities of these resonances depend strongly on the CF(3)Cl coverage in a manner which varies from peak to peak. The resonances at 19.5 and 22.3 eV, which have a significant enhancement in the monolayer regime, are due to electron mediated dipolar dissociation of adsorbed CF(3)Cl molecules. The enhancement is attributed to surface electron attachment following molecular excitation. A significant enhancement in the monolayer regime has also been observed for the resonances at 12.8 and 16.2 eV. These two resonances are ascribable to a combination of electron mediated dipolar dissociation and dissociative electron attachment driven by photoelectrons generated in the neighboring molecules.  相似文献   

8.
We study scattering resonances in the F+HD-->HF+D reaction using a new method for direct evaluation of the lifetime Q-matrix [Aquilanti et al., J. Chem. Phys. 2005, 123, 054314]. We show that most of the resonances are due to van der Waals states in the entrance and exit reaction channels. The metastable states observed in the product reaction channel are assigned by calculating the energy levels and wave functions of the HF...D van der Waals complex. The behavior of resonance energies, widths, and decay branching ratios as functions of total angular momentum is analyzed. The effect of isotopic substitution on resonance energies and lifetimes is elucidated by comparison with previous results for the F+H2 reaction. It is demonstrated that HF(v'=3) products near threshold are formed by decay of the narrow resonances supported by van der Waals wells in the exit channel. State-to-state differential cross sections in the HF(v'=3) channel exhibit characteristic forward-backward peaks due to the formation of a long-lived metastable complex. The role of the exit-channel resonances in the interpretation of molecular beam experiments is discussed.  相似文献   

9.
The processes of resonant dissociative electron attachment to the molecules of dibenzo-p-dioxin and its chlorinated derivatives containing one to four chlorine atoms (totally eight compounds) were investigated. It was established that 2,3,7-trichlorodibenzo-p-dioxin; 1,2,3,4-tetrachlorodibenzo-p-dioxin; 1,3,7,8-tetrachlorodibenzo-p-dioxin, and 2,3,7,8-tetrachlorodibenzo-p-dioxin molecules are chatacterized by positive electron affinities. At electron energies below 2 eV, the electron attachment is caused by the shape resonances. Based on the energy correlation between the negative ion resonance peaks at 3—4 eV and the UV band maxima, it was suggested that electron attachment in this energy region occurs by the mechanism of inter-shell resonance with the molecular singlet-excited states as parents. The possibility for the rearrangement processes resulting in oxy-anionic structures to occur is substantiated.  相似文献   

10.
This paper reports a study of resonant dissociative electron attachment (DEA) to the phenol, chlorobenzene, p-, m-, and o-chlorophenol molecules. On the basis of spectroscopic and thermochemical approaches the resonant states of the molecular negative ions (NIs) and the structures of some dissociative decay products are assigned. In the electron energy range up to 3 eV, DEA processes are determined by the two 2[pi*]-shape resonances resulting mainly in formation of [M-H]- and/or Cl- ions. At higher electron energies the energy correlation between peaks in the negative ion effective yield curves and bands of UV spectra allowed identification of the core-excited resonances. The peculiarities of Cl- ion formation and the vibrational fine structure on the effective yield curves of the [M-H]- ions are discussed. The mass spectrometric procedures for measurement of relative cross sections for NI formation are described.  相似文献   

11.
Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.  相似文献   

12.
In order to obtain a better understanding of the dissociative electron resonance capture processes of H2O we have remeasured the ionization efficie The relative intensities of these curves are strongly dependent on the ion focusing conditions; the observed maxima however (7.0 eV, 9.1 eV, 11.8 eV) a We interpret the resonances as due to Feshbach states associated with the three lowest Koopmans' ions of H2O; this interpretation is supported by a  相似文献   

13.
An experimental and theoretical investigation of the dissociative electron attachment process in nitric oxide is presented. Measurements using the recently developed ion momentum imaging conclusively show the presence of two resonance features in the O(-) channel. These are found to dissociate to give N atoms in the (2)D and (2)P excited states respectively, thus settling the controversies regarding the possible dissociation limits of this process. Though the angular distribution of O(-) shows the resonances contributing to these dissociations are of Π symmetry and a mixture of Π and Σ or Δ symmetry respectively, our calculations using R-matrix theory show no direct electron attachment channel leading to O(-) through these resonances, as all the allowed resonances below 10 eV decay to either O + N(-) or O(-) + N((4)S) channels. We propose that indirect mechanisms through curve crossings lead to the experimentally observed results.  相似文献   

14.
We present calculated dissociative attachment cross sections for ClCN and BrCN in the 0-20 eV energy range. In this energy region, both Cl(-)Br(-) and CN(-) fragments are possible and are produced via dissociation along repulsive resonance curves. Electron scattering calculations, using the complex Kohn variational method and molecular structure calculations, were used to determine the three-dimensional surfaces and resonance parameters. The nuclear dynamics was studied in one, two, and three dimensions using time-dependent wave packet methods, employing the multiconfiguration time-dependent Hartree method for multiple dimensions. The calculated cross sections are reported and compared to the available experiments. Couplings between resonance states will also be examined and discussed.  相似文献   

15.
16.
The cross section for bond breaking at the site of a dissociative temporary negative ion state through the dissociative electron attachment process can be considerably enhanced by the presence of a second longer-lived temporary negative ion state elsewhere in the molecule, even one quite remote from the first. In a series of chloroalkenes possessing both C-Cl and C==C bonds separated by various distances, we show that the cross sections are determined by the lifetime of the lower anion state created by the mixing of the anion states of these two moieties, with the wave function's coefficients giving the probability that the electron is located at the dissociative site. Furthermore, the lifetime of the composite anion state can be expressed in terms of these same coefficients and the lifetimes of the unmixed resonances. We also discuss how these results may give insight into the means by which strand breaks are induced in DNA by the attachment of slow electrons.  相似文献   

17.
The photoexcitation of cold oxyallyl anions was studied below the adiabatic detachment threshold at a photon energy of 1.60 eV. Photodetachment was observed through two product channels, delayed electron emission from a long‐lived anionic state and dissociative photodetachment via absorption of a second photon. The former produced stable neutral C3H4O, while the latter resulted in the concerted elimination of CO+C2H4 products. The neutral oxyallyl singlet state has a barrier‐free route to cyclopropanone as well as zwitterionic character with a large charge separation and dipole moment. The role of long‐lived dipole‐bound resonances built on the singlet state below the detachment threshold is discussed. These results provide one of the first observations of delayed photoemission in a small cold molecular radical anion, a consequence of the complex electronic structure of the neutral diradical, and provide an example of resonance‐mediated control of the photodissociation processes.  相似文献   

18.
Dynamical resonances in Cl(2P) + H2 scattering are investigated with the aid of a time-dependent wave packet approach using the Capecchi-Werner coupled ab initio potential energy surfaces [Phys. Chem. Chem. Phys. 2004, 6, 4975]. The resonances arising from the prereactive van der Waals well (approximately 0.5 kcal/mol) and the transition-state (TS) region of the 2Sigma(1/2) ground spin-orbit (SO) state of the Cl(2P) + H2 system are calculated and assigned by computing their eigenfunctions and lifetimes. The excitation of even quanta along the bending coordinate of the resonances is observed. The resonances exhibit an extended van der Waals progression, which can be attributed to the dissociative states of ClH2. Excitation of H2 vibration is also identified in the high-energy resonances. The effect of the excited 2P(1/2) SO state of Cl on these resonances is examined by considering the electronic and SO coupling in the dynamical simulations. While the electronic coupling has only a minor impact on the resonance structures, the SO coupling has significant effect on them. The nonadiabatic effect due to the SO coupling is stronger, and as a result, the spectrum becomes broad and diffuse particularly at high energies. We also report the photodetachment spectrum of ClD2- and compare the theoretical findings with the available experimental results.  相似文献   

19.
Comprehensive theoretical calculations are reported for the dissociative recombination of the lowest vibrational level of the N(2) (+) ground state. Fourteen dissociative channels, 21 electron capture channels, and 48 Rydberg series including Rydberg states having the first excited state of the ion as core are described for electron energies up to 1.0 eV. The calculation of potential curves, electron capture and predissociation widths, cross sections and rate constants are described. The cross sections and rate constants are calculated using Multichannel Quantum Defect Theory which allows for efficient handling of the Rydberg series. The most important dissociative channel is 2(3)Π(u) followed by 4(3)Π(u). Dissociative states that do not cross the ion within the ground vibrational level turning points play a significant role in determining the cross section structure and at isolated energies can be more important than states having a favorable crossing. By accounting for autoionization, the interactions between resonances, between dissociative states, and between resonances and dissociative states it is found that the cross section can be viewed as a complex dissociative recombination spectrum in which resonances overlap and interfere. The detailed cross section exhibits a rapid variation in atomic quantum yields for small changes in the electron energy. A study of this rapid variation by future high resolution storage ring experiments is suggested. A least squares fit to the calculated rate constant from the ground vibrational level is 2.2+0.2-0.4×10(-7)×(T(e)/300)(-0.40)?cm(3)/sec for electron temperatures, T(e), between 100 and 3000 K and is in excellent agreement with experimentally derived values.  相似文献   

20.
Vibrational excitation by electron impact and dissociative electron attachment in HCl are described in a time-dependent picture. The calculations are based on the nonlocal resonance model of low-energy electron-HCl scattering proposed earlier by Domcke and Mündel. The space-time integrodifferential equation of motion for the time-dependent wave packet representing the electron-HCl collision complex has been solved using standard numerical techniques. The results provide insight into the nature of the pronounced threshold phenomena observed in the vibrational excitation and dissociative attachment cross sections of HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号