首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetic acid vapor-deposited on ultrathin noncrystalline ice (NCI) and polycrystalline ice (PCI) films (less than 6 nm thick) under ultrahigh vacuum conditions has been investigated by using Fourier Transform Infrared Reflection-Absorption Spectroscopy. Pristine acetic acid deposited at 123 K (on a copper support) appears as an amorphous solid, which undergoes an irreversible phase transformation to a more structurally ordered (polycrystalline) form upon annealing to 153 K. Acetic acid is found to adsorb on NCI and PCI films initially through hydrogen bonding between C=O and dangling OH (of ice), followed by the formation of multilayers at 123 K. Thermal evolution studies of a low exposure of acetic acid on the ultrathin NCI and PCI films show that acetic acid undergoes coevaporation with water likely as an acetic acid hydrate at 155 K, which continues until the entire ice film has been exhausted at 165 K. Above 165 K, the remaining acetic acid solid appears to evaporate without undergoing the phase transformation, in contrast to the case of a high acetic acid exposure. Coevaporation of acetic acid with water is also found to proceed at a faster rate than the subsequent evaporation of acetic acid, which is consistent with the weaker interactions observed in the H-bonded acetic acid hydrate than that in acetic acid solid.  相似文献   

2.
The adsorption of gaseous acetic acid (CH(3)C(O)OH) on thin ice films and on ice doped with nitric acid (1.96 and 7.69 wt %) was investigated over upper troposphere and lower stratosphere (UT/LS) temperatures (198-208 K), and at low gas concentrations. Experiments were performed in a Knudsen flow reactor coupled to a quadrupole mass spectrometer. The initial uptake coefficients, γ(0), on thin ice films or HNO(3)-doped ice films were measured at low surface coverage. In all cases, γ(0) showed an inverse temperature dependence, and for pure thin ice films, it was given by the expression γ(0)(T) = (4.73 ± 1.13) × 10(-17) exp[(6496 ± 1798)/T]; the quoted errors are the 2σ precision of the linear fit, and the estimated systematic uncertainties are included in the pre-exponential factor. The inverse temperature dependence suggests that the adsorption process occurs via the formation of an intermediate precursor state. Uptakes were well represented by the Langmuir adsorption model, and the saturation surface coverage, N(max), on pure thin ice films was (2.11 ± 0.16) × 10(14) molecules cm(-2), independent of temperature in the range 198-206 K. Light nitration (1.96 and 7.69 wt %) of ice films resulted in more efficient CH(3)C(O)OH uptakes and larger N(max) values that may be attributed to in-bulk diffusion or change in nature of the gas-ice surface interaction. Finally, it was estimated that the rate of adsorption of acetic acid on high-density cirrus clouds in the UT/LS is fast, and this is reflected in the short atmospheric lifetimes (2-8 min) of acetic acid; however, the extent of this uptake is minor resulting in at most a 5% removal of acetic acid in UT/LS cirrus clouds.  相似文献   

3.
The growth of amorphous solid water (ASW) films on Pt(111) is investigated using rare gas (e.g., Kr) physisorption. Temperature programmed desorption of Kr is sensitive to the structure of thin water films and can be used to assess the growth modes of these films. At all temperatures that are experimentally accessible (20-155 K), the first layer of water wets Pt(111). Over a wide temperature range (20-120 K), ASW films wet the substrate and grow approximately layer by layer for at least the first three layers. In contrast to the ASW films, crystalline ice films do not wet the water monolayer on Pt(111). Virtually identical results were obtained for ASW films on epitaxial Pd(111) films grown on Pt(111). The desorption rates of thin ASW and crystalline ice films suggest that the relative free energies of the films are responsible for the different growth modes. However, at low temperatures, surface relaxation or "transient mobility" is primarily responsible for the relative smoothness of the films. A simple model of the surface relaxation semiquantitatively accounts for the observations.  相似文献   

4.
The interaction of acetic acid (AA, CH(3)COOH), with solid water, deposited on metals, tungsten and gold, at 80 K, was investigated. We have prepared acid/water interfaces at 80 K, namely, acid layers on thin films of solid water and H(2)O adlayers on thin acid films; they were annealed between 80 and 200 K. Metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy UPS(HeII) were utilized to obtain information on the electronic structure of the outermost surface from the study of the electron emission from the weakest bound MOs of the acids, and of the molecular water. Temperature-programmed desorption (TPD) provided information on the desorption kinetics, and Fourier-transformed infrared spectroscopy (FTIR) provided information on the identification of the adsorbed species as well as on the water and acid crystallization. The results are compatible with the finding of ref 1 (preceding paper), made on the basis of DFT calculations, that AA adsorbs on ice as cyclic dimers. Above 120 K, a rearrangement of the AA dimers is suggested by a sharpening of the spectral features in the IR spectra and by spectral changes in MIES and UPS; this is attributed to the glass transition in AA around 130 K. Above 150 K the spectra transform into those characteristic for polycrystalline polymer chains. This structure is stable up to about 180 K; desorption of water takes place from underneath the AA film, and practically all water has desorbed through the AA film before AA desorption starts. There is no indication of water-induced deprotonation of the acid molecules. For the interaction of H(2)O molecules adsorbed on amorphous AA films, the comparison of MIES with the DFT results of ref 1 shows that the initial phase of exposure does not lead to the formation of a top-adsorbed closed water film at 80 K. Rather, the H(2)O molecules become attached to or incorporated into the preexisting AA network by H bonding; no water network is formed in the initial stage of the water adsorption. Also under these conditions no deprotonation of the acid can be detected.  相似文献   

5.
The interaction of formic acid (HCOOH) with solid water, deposited on tungsten at 80 K, was investigated. We have prepared and annealed formic acid (FA)/water interfaces (FA layers on thin films of solid water and H(2)O adlayers on thin FA films). Metastable impact electron spectroscopy and ultraviolet photoemission spectroscopy (He I and II) were utilized to study the electron emission from the 10a' to 6a' molecular orbitals (MOs) of FA, and the 1b(1), 3a(1), and 1b(2) MOs of H(2)O. These spectra were compared with results of density-functional theory calculations on FA-H(2)O complexes reported in Ref. 14 [A. Allouche, J. Chem. Phys. 122, 234703(2005), (preceding paper)]. Temperature programmed desorption was applied for information on the desorption kinetics. Initially, FA is adsorbed on top of the water film. The FA spectra are distorted with respect to those from FA monomers; it is concluded that a strong interaction exists between the adsorbates. Even though partial solvation of FA species takes place during annealing, FA remains in the top layer up to the desorption of the water film. When H(2)O molecules are offered to FA films at 80 K, no water network is formed during the initial stage of water exposure; H(2)O molecules interact individually via H bonds with the formic acid network. Experiment and theory agree that no water-induced deprotonation of the formic acid molecules takes place.  相似文献   

6.
We studied the initial‐stage mechanism of the electrophilic addition reaction of ethene with HCl by examining the interactions between ethene and HCl on water‐ice and frozen molecular films at temperatures of 80–140 K. Cs+ reactive ion scattering (RIS) and low‐energy sputtering (LES) techniques were used to probe the reaction intermediates that were kinetically trapped on the surface, in conjunction with temperature‐programmed desorption (TPD) mass spectrometry to monitor the desorbing species. The reaction initially produced the π complex of HCl and ethene at temperatures below about 93 K and an “ethyl cationic species” at temperatures below about 100 K. The ethyl cationic species was formed via direct proton transfer from the HCl molecule to ethene with the assistance of water solvation, rather than via the interaction of hydronium ions and ethene. At high temperatures, this species dissociated into ethene and hydronium and chloride ions. The reaction did not, however, complete the final transition state on the ice surface to produce ethyl chloride. The observation gives evidence that the electrophilic addition reaction of ethene occurs through an ethyl‐like intermediate with an ionic character.  相似文献   

7.
The growth of crystalline ice films on Pt(111) and Pd(111) is investigated using temperature programed desorption of the water films and of rare gases adsorbed on the water films. The water monolayer wets both Pt(111) and Pd(111) at all temperatures investigated [e.g., 20-155 K for Pt(111)]. However, crystalline ice films grown at higher temperatures (e.g., T>135 K) do not wet the monolayer. Similar results are obtained for crystalline ice films of D2O and H2O. Amorphous water films, which initially wet the surface, crystallize and dewet, exposing the water monolayer when they are annealed at higher temperatures. Thinner films crystallize and dewet at lower temperatures than thicker films. For samples sputtered with energetic Xe atoms to prepare ice crystallites surrounded by bare Pt(111), subsequent annealing of the films causes water molecules to diffuse off the ice crystallites to reform the water monolayer. A simple model suggests that, for crystalline films grown at high temperatures, the ice crystallites are initially widely separated with typical distances between crystallites of approximately 14 nm or more. The experimental results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on both Pt(111) and Pd(111).  相似文献   

8.
Molecular beam techniques are used to grow water films on Pt(111) with incident collision energies from 5 to 205 kJ/mole. The effect of the incident collision energy on the phase of vapor deposited water films and their subsequent crystallization kinetics are studied using temperature programmed desorption and infrared spectroscopy. We find that for films deposited at substrate temperatures below 110 K, the incident kinetic energy (up to 205 kJ/mole) has no effect on the initial phase of the deposited film or its crystallization kinetics. Above 110 K, the substrate temperature does affect the phase and crystallization kinetics of the deposited films but this result is also independent of the incident collision energy. The presence of a crystalline ice template (underlayer) does affect the crystallization of amorphous solid water, but this effect is also independent of the incident beam energy. These results suggest that the crystallization of amorphous solid water requires cooperative motion of several water molecules.  相似文献   

9.
Interactions of 13CO2 guest molecules with vapor-deposited porous H2O ices have been examined using temperature-programmed desorption (TPD) and Fourier transform infrared (FTIR) techniques. Specifically, the trapping and release of 13CO2 by amorphous solid water (ASW) has been studied. The use of 13CO2 eliminates problems with background CO2. Samples were prepared by (i) depositing 13CO2 on top of ASW, (ii) depositing 13CO2 underneath ASW, and (iii) codepositing 13CO2 and H2O during ASW formation. Some of the deposited 13CO2 becomes trapped when the ice film is annealed. The amount of 13CO2 trapped in the film depends on the deposition method. The release of trapped molecules occurs in two stages. The majority of the trapped 13CO2 escapes during the ASW-to-cubic ice phase transition at 165 K, and the rest desorbs together with the cubic ice film at 185 K. We speculate that the presence of 13CO2 at temperatures up to 185 K is due to 13CO2 that is trapped in cavities within the ASW film. These cavities are similar to ones that trap the 13CO2 that is released during crystallization. The difference is that 13CO2 that remains at temperatures up to 185 K does not have access to escape pathways to the surface during crystallization.  相似文献   

10.
The growth and annealing behavior of ultrathin Au films on Pd{111} were monitored with scanning tunneling microscopy (STM) and medium energy ion scattering (MEIS). The adsorption of acetic acid on both clean and deliberately carbon-contaminated bimetallic surfaces was investigated with reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). We report that the surface chemistry of acetic acid is strongly modified by the presence of Au in the bimetallic surface which acts both to stabilize adsorbed acetate and to decrease the tendency of acetic acid to decompose on adsorption to produce adsorbed carbon. The adsorption of acetic acid at 300 K is found to cause measurable segregation of Pd to the surface for all surface compositions tested.  相似文献   

11.
应用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS),研究了Mn薄膜/Rh(100)上乙醇的吸附和分解,提出了表面吸附和分解的反应工,在300K时,蒸镀的Mn在清洁Rh(100)表面上以层层模式生长;在130-300K间,在25mLMn/Rh(100)表面上吸附20L乙醇的TDS结果与乙醇在Rh(100)表面上的结果一致在155K处,脱附出多层凝聚态吸附的乙醇;升温到255K,脱附出H2和CH4,继续升温,出现了与乙醇在R (100)表面上不一致的现象,在470K,同时出现了第2个H2和CH4的脱附峰,在500K,脱附极少量的CO;在950K附近,脱附出大量CO。  相似文献   

12.
Infrared spectra of thin films of solid HNCO condensed from the gas phase are characterized in terms of their vibrational frequencies, mode assignments, and integrated band intensities at low temperatures ( approximately 20-145 K). Isocyanic acid is shown to react with water (H2O) and ammonia (NH3) even at low temperatures; consequently, it may be an important species in the chemistry of interstellar ices and comets.  相似文献   

13.
Interactions of sodium chloride with amorphous and crystalline water films, leading to the possible formation of a dilute NaCl solution, were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature. A monolayer of NaCl tends to remain on the surface or in subsurface sites of thick amorphous solid water films (200 monolayers); the Na+ ion is hydrated preferentially, whereas the Cl- ion is segregated at the surface. The hydration structure of NaCl is fundamentally unchanged for viscous liquid water that appears at temperatures higher than 136 K. The solubility of NaCl increases abruptly at 160 K because of the evolution of supercooled liquid water, which can hydrate the Cl- ion efficiently. However, the diffusion of the ions toward the bulk of supercooled liquid water is interrupted by crystallization; therefore, the dilute NaCl solution that is characterized by completely separated Na+-Cl- pairs may not be formed. When NaCl is deposited on the crystalline ice film, hydration of NaCl is enhanced above 160 K as well, indicating that a liquidlike phase coexists with crystals.  相似文献   

14.
Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.  相似文献   

15.
The adsorption of acetic acid on a proton-ordered water ice surface is modeled using periodic plane-waves density-functional theory. The structures of acetic acid adsorbed as a monomer or oligomers, hydrated or not, are calculated through gradient optimization. The resulting quantum electronic density of states are compared to metastable impact electron spectroscopy (MIES) results and lead to selection of the most plausible structures of acetic acid on water ice. Hypotheses are formulated for the structure of the acid film growing on the ice surface including mainly cyclic dimers and hydrated forms. Adsorptions of single water molecules on acetic acid crystal surfaces are also studied after optimization of the acetic acid crystal bulk and surface structure. More comparisons with spectroscopic studies are proposed in the accompanying paper.  相似文献   

16.
Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.  相似文献   

17.
The surface chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2x1 has been investigated using multiple internal reflection-Fourier transform infrared spectroscopy, Auger electron spectroscopy, and thermal desorption mass spectrometry. Molecular adsorption of VTMS at submonolayer coverages is dominating at cryogenic temperatures (100 K). Upon adsorption at room temperature, chemical reaction involving rehybridization of the double bond in VTMS occurs. Further annealing induces several reactions: molecular desorption from a monolayer by 400 K, formation and desorption of propylene by 500 K, decomposition leading to the release of silicon-containing products around 800 K, and, finally, surface decomposition leading to the production of silicon carbide and the release of hydrogen as H(2) at 800 K. This chemistry is markedly different from the previously reported behavior of VTMS on Si(111)-7x7 surfaces resulting in 100% conversion to silicon carbide. Thus, some information about the surface intermediates of the VTMS reaction with silicon surfaces can be deduced.  相似文献   

18.
We measured the incorporation of adsorbed alkanes in and their desorption from the amorphous solid water (ASW) by means of secondary ion mass spectroscopy and temperature programmed desorption. The heavier alkanes such as butane and hexane are incorporated completely in the bulk of the nonporous ASW layer below 100 K probably due to the preferential formation of ice structures around the solute molecules. The self-diffusion of water molecules occurs above the glass transition temperature (136 K). The liquid water emerges above 165 K, as evidenced by simultaneous occurrence of the dehydration of alkanes and the morphological change of the water layer induced by the surface tension.  相似文献   

19.
The adsorption state of HCl at 20 and 90 K on crystalline water ice films deposited under ultrahigh vacuum at 150 K has been studied by X-ray absorption spectroscopy at the O1s K-edge and Cl2p L-edge. We show that HCl dissociates at temperatures as low as 20 K, in agreement with the prediction of a spontaneous ionization of HCl on ice. Comparison between the rate of saturation of the "dangling" hydrogen bonds and the chlorine uptake indicates that hydrogen bonding of HCl with the surface native water "dangling" groups only accounts for a small part of the ionization events (20% at 90 K). A further mechanism drives the rest of the dissociation/solvation process. We suggest that the weakening of the ice surface hydrogen-bond network after the initial HCl adsorption phase facilitates the generation of new dissociation/solvation sites, which increases the uptake capacity of ice. These results also emphasize the necessity to take into account not only a single dissociation event but its catalyzing effect on the subsequent events when modeling the uptake of hydrogen-bonding molecules on the ice surface.  相似文献   

20.
Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in bulk-like and ultrathin glassy water films. Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor-deposition approach was also used to grow multiple nanoscale (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 K below the onset of crystallization. However, no such transition was observed in bulk-like samples prior to their crystallization. These results indicate that thin-film water demonstrates glass softening dynamics that are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition, which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these findings for past studies of glass softening dynamics in various glassy water samples are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号