首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of high energy electron (23 MeV) irradiation on the electrical characteristics of p-channel polysilicon thin film transistors (PSTFTs) was studied. The channel 220 nm thick LPCVD (low pressure chemical vapor deposition) deposited polysilicon layer was phosphorus doped by ion implantation. A 45 nm thick, thermally grown, SiO2 layer served as gate dielectric. A self-alignment technology for boron doping of the source and drain regions was used. 200 nm thick polysilicon film was deposited as a gate electrode. The obtained p-channel PSTFTs were irradiated with different high energy electron doses. Leakage currents through the gate oxide and transfer characteristics of the transistors were measured. A software model describing the field enhancement and the non-uniform current distribution at textured polysilicon/oxide interface was developed. In order to assess the irradiation-stimulated changes of gate oxide parameters the gate oxide tunneling conduction and transistor characteristics were studied. At MeV dose of 6×1013 el/cm2, a negligible degradation of the transistor properties was found. A significant deterioration of the electrical properties of PSTFTs at MeV irradiation dose of 3×1014 el/cm2 was observed.  相似文献   

2.
A series of experiments aimed at improving the performance of amorphous silicon field effect transistors has been carried out. The dc and dynamic characteristics of the optimised devices are described. Stable devices capable of ON-currents of the order of 100 μA with OFF-currents ?10?11 A can be fabricated which could, in principle, be used to address more than 1000 lines of a liquid crystal display. The properties of the highly conducting ON-state channel have also been studied. The field effect mobility, 0.3 cm2 V?1 s?1 at room temperature, has an activation energy of 0.1 eV at the higher gate voltages. The possible reasons for the improvement in performance over earlier devices are discussed.  相似文献   

3.
The state of the art of a tracking detector and calorimeter electronics that are being developed for experiments at the Large Hadron Collider (LHC) is discussed. Construction of the detectors is briefly described. The problems of fabrication of integrated circuits based on a radiation-resistant technology are considered, as well as the solution to the problem of microconnections between sensitive elements and readout amplifiers in two-coordinate semiconductor detectors. The parameters and block diagrams of both analog and digital integrated circuits are given; these circuits are used for amplifying and shaping the signals measured by tracking detectors of elementary particles and calorimeters. The contributions of Russian experimenters and physicists of the Joint Institute for Nuclear Research to the development of detector electronics for experiments at the LHC is described.  相似文献   

4.
Final results on a CMOS 0.18 μm front-end chip for silicon strips readout are summarized and preliminary results on time measurement are discussed. The status of the next version in 0.13 μm is briefly presented.   相似文献   

5.
6.
We report a systematic study of the electromechanical properties of graphene films for flexible transparent conducting electrodes. The flexibility of graphene films, which were grown using a chemical vapor deposition (CVD) method and transfer process on polyethylene terephthalate (PET) substrates, was investigated using a lab-made inner/outer bending, twisting and stretching test system. The electromechanical properties as a function of the change of bending radius, twisting angle and strain distance were evaluated by measuring the change in resistance. The change in resistance during the inner bending test was less than 8% even when the bending radius was 3 mm. Additionally, the results of the inner bending fatigue test showed a constant resistance throughout 2000 bending cycles. However, in the outer bending test, the resistance increased substantially when the bending radius was smaller than 10 mm. Therefore, we can expect that more cracks form between the grains of graphene during the outer bending test. The twistability and stretchability of the graphene film were also investigated. Both twisting and stretching tests show gradually increasing resistances according to the twisting angle and stretching distance. These results provide useful information regarding the electromechanical properties of graphene transparent conducting films for the development of flexible electronics.  相似文献   

7.
This review is devoted to a discussion of the prospects for solving the problem of a low degree of integration of the traditional elements for promising (due to the high performance and extremely low energy dissipation) superconducting digital electronics. We define three main directions on the path to compact multi-element Josephson electronic systems: (1) reduction of the Josephson junction to submicron size, (2) decrease of the area of standard logic cells, and (3) fabrication of a compact and rapid Josephson memory. We present the physical foundations of Josephson elements in order to show the fundamental constraints on establishing standard submicron tunnel contacts and compact logic cells/memory elements. This survey clearly demonstrates the essence of breakthrough technological solutions to create ultrasmall heterostructures with desired settings, reduce and optimize logic cells, and create memory unit cells based on Josephson junctions with magnetic layers.  相似文献   

8.
《应用光谱学评论》2012,47(10):803-828
ABSTRACT

Molecular transistors have been extensively investigated as the building blocks for the ultimate miniaturization of electronic devices. They are assembled from single molecules and molecular monolayers serving as a current-carrying channel in a conventional field-effect transistor configuration, in which gate electrodes have been electrically or electrochemically implemented in several types of test beds such as electromigration junctions, mechanically controllable break junctions, and devices with carbon-based electrodes. The energy level alignments of the component molecules incorporated into the transistor can be tuned using molecular orbital gating and it can ultimately control the flow of charge carriers. Herein, we review recent progress in studying spectroscopic characterization techniques and charge transport properties of molecular transistors.  相似文献   

9.
Abstract

The change in microstrains ε, block sizes L and in the temperature dependences of conductivity of polysilicon with the grain size 30-40nm at N+, Ne+, P+ ion irradiation has been studied. It is shown that ε increases while L practically is not changing up to amorphization. The change in conductivity is governed by an increase in the density of states near the Fermi level and depends both on the damage rate for the given ions and their chemical activity.  相似文献   

10.
红外成像技术在空间探测、对地观测、安防监控等领域的应用越来越广,为了确保红外目标识别的准确性,必须掌握目标的辐射特性。目标辐射特性需要在外场实际条件下测量得到,需要利用大面积黑体辐射源对目标特性测量设备进行现场辐射参数校准。设计了一种大面积黑体辐射源,辐射体采用铝材质并发黑处理,大面积黑体辐射源温度控制采用PID控制算法。在外场实际环境温度为26.8 ℃,湿度为60%时对目标特性测量设备辐射参数进行了校准。试验数据表明:辐射温度测量不确定度为0.4 ℃(k=2),取得了较好的应用效果。  相似文献   

11.
通过将有机空穴阻挡材料BCP薄层插入垂直构型有机发光晶体管器件ITO/NPB(40nm)/Al(30nm)/NPB(20nm)/Alq3(55nm)/Al中的不同位置对器件光电特性的影响来研究器件漏电流较大的原因以及器件中具体的载流子过程.充分证明了栅极注入的空穴对沟道中的电流有贡献.进而通过用LiF薄层修饰漏极来增强电子的注入并减小漏电流,得到了相对稳定的发光晶体管器件,其发光强度有很大提高并可很好地由栅极电压来进行调控.更换发光材料层容易得到不同颜色的发光晶体管. 关键词: 垂直构型有机发光晶体管(VOLET) 静电感应晶体管(SIT) N')" href="#">NPB (N N′-diphenyl-N')" href="#">N′-diphenyl-N N′-bis(1-naphtyl)-1')" href="#">N′-bis(1-naphtyl)-1 1′-biphenyl-4  相似文献   

12.
On the basis of density functional theory calculations, we have systematically investigated the electronic properties of armchair-edge graphene nanoribbons (GNRs) doped with boron (B) and nitrogen (N) atoms. B (N) atoms could effectively introduce holes (electrons) to GNRs and the system exhibits p- (n-) type semiconducting behavior after B (N) doping. According to the electronic structure calculations, Z-shape GNR-based field effect transistors (FETs) is constructed by selective doping with B or N atoms. Using first-principles quantum transport calculations, we demonstrate that the B-doped p-type GNR-FETs can exhibit high levels of performance, with high ON/OFF ratios and low subthreshold swing. Furthermore, the performance parameters of GNR-FETs could be controlled by the p-type semiconducting channel length.  相似文献   

13.
Adiabatic bend transitions in large mode area multimode fibres were investigated theoretically using the beam propagation method. Adiabatic bend transducers preserve the power of guided light in the fundamental mode while guiding from one level of curvature to another for improved operation of mode filters and fibre amplifiers. A method is shown and used to find the optimised guidance path. Applications of these transducers include modal power back-converters, and guidance paths into and out of higher order mode filtering devices which work on bending.  相似文献   

14.
The current-voltage characteristics of MOS field-effect transistors is investigated theoretically and experimentally in the region of extremely high drain electric fields ED using the electron temperature concept in the classical three-dimensional theory. It is found that the drain field at which the drain current becomes non-ohmic on the basis of hot electron effects is related to the surface field Ezs by ED~√Ezs. Other expressions for the field dependent mobility are also given which allow the construction of the current-voltage characteristics.  相似文献   

15.
In this study, amorphous HfInZnO (a-HIZO) thin films and related thin-film transistors (TFTs) were fabricated using the RF-sputtering method. The effects of the sputtering power (50–200 W) on the structural, surface, electrical, and optical properties of the a-HIZO films and the performance and NBIS stability of the a-HIZO TFTs were investigated. The films’ Ne increased and resistivity decreased as the sputtering power increased. The 100 W deposited a-HIZO film exhibited good optical and electrical properties compared with other sputtering powers. Optimization of the 100 W deposited a-HIZO TFT demonstrated good device performance, including a desirable μFE of 19.5 cm2/Vs, low SS of 0.32 V/decade, low Vth of 0.8 V, and high Ion/Ioff of 107, respectively. The 100 W deposited a-HIZO TFT with Al2O3 PVL also exhibited the best stability, with small Vth shifts of -2.2 V during NBIS testing. These high-performance a-HIZO thin films and TFTs with Al2O3 PVL have practical applications in thin-film electronics.  相似文献   

16.
Strontium-zinc-oxide(SrZnO) films forming the semiconductor layers of thin-film transistors(TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide(ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel.  相似文献   

17.
刘红  印海建  夏树宁 《物理学报》2009,58(12):8489-8500
在紧束缚理论的基础上,推导出轴向拉伸和扭转形变时碳纳米管(CNT)的能带公式.结果显示拉伸和扭转形变都可以改变CNT的导电性质,在金属型和半导体型之间转变,特别是对于锯齿型CNT,根据n 与3的余数关系,在拉伸和扭转中分别显示出三种不同的变化规律.进一步应用场效应晶体管Natori理论模拟计算形变对CNT场效应晶体管的电流-电压特性的影响,锯齿型CNT根据n 与3的余数关系表现出不同的电流变化趋势,而对于扶手椅型CNT轴向拉伸不改变电流;在扭转形变时,CNT电流急剧升高,特别是扶手椅型CNT.锯齿型CNT和扶手椅型CNT的电流随扭转角度和外电压行为明显不同.在某些特定的扭转角度,电流随扭转角度变化非常显著,显示出锯齿型CNT和扶手椅型CNT发生半导体型与金属型之间的转变. 关键词: 碳纳米管 紧束缚理论 费米能级 能带结构  相似文献   

18.
A theoretical analysis of the electrical characteristics of GaAs, InAs, InSb, and Si quantum interference T transistors is performed with consideration of the dependence of the effective masses on the quantum wire dimensions. It is shown for extremely small wire dimensions that none of the materials has significant advantages over the others with respect to the frequency characteristics of the transistors investigated. Zh. Tekh. Fiz. 69, 130–131 (November 1999)  相似文献   

19.
In this work, the off-state breakdown characteristics of two different types InGaP-based high-barrier gate heterostructure field-effect transistors are studied and demonstrated. These devices have different high-barrier gate structures, e.g. the i-InGaP layer for device A and n  + - GaAs/p +  -InGaP/n-GaAs camel-like structure for device B. The wide-gap InGaP layer is used to improve the breakdown characteristics. Experimentally, the studied devices show high off-state breakdown characteristics even at high temperature operation regime. This indicates that the studied devices are suitable for high-power and high-temperature applications. In addition, the off-state breakdown mechanisms are different for device A and B. For device A, off-state breakdown characteristics is only gate dominated at the temperature regime from 30 to 180   C. For device B, off-state breakdown characteristics are gate and channel dominated at 30   C and only gate dominated within 150 to 210   C.  相似文献   

20.
在淀积有纳米间隙栅电极、源电极和漏电极的衬底上生长量子点,制作出多岛结构的单电子晶体管.在77K温度下对源漏特性进行了测试,得到了库仑阻塞特性.并且成功抑制了单岛单电子晶体管中易出现的共隧穿效应,观察到较大的库仑阈值电压.对试验数据进行了分析,阐明了岛的不同结构组态产生的不同输运效果. 关键词: 单电子晶体管 量子点 库仑阻塞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号