首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘思宁  周艳文  吴川  吴法宇 《发光学报》2015,36(12):1427-1433
室温下,采用射频磁控溅射AZO粉末靶和Ag靶在玻璃基底上制备Ag层厚度分别为12 nm和15 nm两组对称结构掺铝氧化锌/银/掺铝氧化锌(AZO/Ag/AZO)透明导电薄膜,研究了Ag层和AZO层厚度对薄膜光电性能的影响。结果表明:3层薄膜的可见光区平均透光率达到了80%,550 nm处的最高透过率达到了88%,方块电阻小于5 Ω/□。Ag层厚度是影响AZO/Ag/AZO薄膜光电性能的主要因素,AZO层的厚度对薄膜光学性能影响较大。  相似文献   

2.
刘思宁  周艳文  沙天怡 《发光学报》2015,36(11):1300-1306
室温下在玻璃和聚酰亚胺两种不同衬底上, 采用射频磁控溅射法溅射掺铝氧化锌(AZO)粉末靶和固体Ag靶, 制备了两组AZO/Ag/AZO 3层透明导电薄膜, 研究了AZO层厚度对不同衬底3层膜结构和光电性能的影响.结果表明:不同衬底的两组AZO/Ag/AZO薄膜均为多晶膜.当Ag层厚度不变时, 随着AZO层厚度的增加, 两组薄膜电学性能变化不大, 透射峰向长波方向移动.玻璃和PI衬底上制备的AZO(30 nm)/Ag(14 nm)/AZO(30 nm)薄膜, 在550 nm处的透光率分别为85%和70%, 方块电阻分别为2.6 Ω/□和4.6 Ω/□.  相似文献   

3.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes.  相似文献   

4.
Thin films of a tailor-made photodecomposible aryltriazene polymer were applied in a modified laser-induced forward transfer (LIFT) process as sacrificial release layers. The photopolymer film acts as an intermediate energy-absorbing dynamic release layer (DRL) that decomposes efficiently into small volatile fragments upon UV laser irradiation. A fast-expanding pressure jet is generated which is used to propel an overlying transfer material from the source target onto a receiver. This DRL-assisted laser direct-write process allows the precise deposition of intact material pixels with micrometer resolution and by single laser pulses. Triazene-based photopolymer DRL donor systems were studied to derive optimum conditions for film thickness and laser fluences necessary for a defined transfer process at the emission wavelength of a XeCl excimer laser (308 nm). Photoablation, surface detachment, delamination and transfer behavior of aryltriazene polymer films with a thickness from 25 nm to ∼400 nm were investigated in order to improve the process control parameters for the fabrication of functional thin-film devices of microdeposited heat- and UV-sensitive materials.  相似文献   

5.
The Ga-doped ZnO (GZO) and Al-doped ZnO (AZO) thin films were grown on quartz glass substrates by pulsed laser deposition under different oxygen partial pressures (PO2). The transparent performances of films versus properties of structure and conductivity were discussed. With the increase of PO2, the transmittance of both GZO films and AZO films increased to maximum and then decreased which were in according with the change of crystallization quality. The transmittance of GZO films was higher than that of AZO films, which were not dominated by the impurity ions induced by doping. AFM images and surface roughness mean square coefficients showed that the surfaces of GZO films were smoother than that of AZO films, which were due to the dopant Ga acting as the surfactant and smoothed the GZO films surface.  相似文献   

6.
This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 °C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.  相似文献   

7.
从实验和理论两个方面,探讨了金属Ag不同掺杂浓度对Ag:Bi2O3复合膜线性和非线性光学性质的影响. 用吸收光谱研究了Ag浓度与Ag:Bi2O3复合膜表面等离子体共振带之间的关系;用皮秒Z-扫描技术研究了共振和非共振情况下(激发光波长分别为532nm和1064nm),金属Ag浓度与复合膜三阶非线性极化率的关系. 基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Ag浓度时Ag:Bi2O3复合膜的三阶非线性效应,研究了激发波长和金属浓度对复合膜线性和非线性光学性质的影响. 结果表明,等离子体共振增强和合适的金属掺杂浓度使得三阶极化率增强二个量级,在Ag浓度为35%左右和接近等离子体共振频率(相应吸收带位于560nm—622nm)的532nm激发时,χ(3)具有最大值2.4×10-9esu. 关键词: 金属纳米颗粒 复合膜 三阶非线性 表面等离子体共振  相似文献   

8.
Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the nature of the top and bottom TCOs, mainly due to the change in the reflectivity of the multilayers. Structural, electrical and optical properties are studied to optimize the structure for very thin transparent electrodes suitable for photovoltaic applications.  相似文献   

9.
Protein-based biosensors are highly efficient tools for protein detection and identification. The production of these devices requires the manipulation of tiny amounts of protein solutions in conditions preserving their biological properties. In this work, laser induced forward transfer (LIFT) was used for spotting an array of a purified bacterial antigen in order to check the viability of this technique for the production of protein microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength, 10 ns pulse duration) was used to transfer droplets of a solution containing the Treponema pallidum 17 kDa protein antigen on a glass slide. Optical microscopy showed that a regular array of micrometric droplets could be precisely and uniformly spotted onto a solid substrate. Subsequently, it was proved that LIFT deposition of a T. pallidum 17 kDa antigen onto nylon-coated glass slides preserves its antigenic reactivity and diagnostic properties. These results support that LIFT is suitable for the production of protein microarrays and pave the way for future diagnostics applications. PACS 87.14.Ee; 81.15.Fg; 07.07.Df  相似文献   

10.
Ni, Ag, and Pt-based Al-doped ZnO (AZO) films have been deposited as transparent conductivity layers on quartz by RF magnetron sputtering and characterized by X-ray diffraction, Hall measurement, optical transmission spectroscopy, scanning electron microscopy (SEM). The deposition of thicker metal layer in double layers resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. A film consisting of AZO (250 nm)/Ni (2 nm) double structure, exhibits a sheet resistance of 21.0 Ω/sq, a high transmittance of 76.5%, and characterize good adhesion to substrate. These results make the satisfactory for GaN-based light-emitting diodes (LEDs) and solar cells with metal-based AZO double films as current spread layers.  相似文献   

11.
Aluminum-doped ZnO(AZO) thin films with thin film metallic glass of Zr(50)Cu(50) as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show(100)and(002) unique preferential orientations, respectively. After inserting Zr(50)Cu(50) layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25℃ to 520℃, the sheet resistance of AZO(100 nm)/Zr(50)Cu(50)(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr(50)Cu(50)(4 nm) film deposited at a substrate temperature of 360℃ exhibits a low sheet resistance of 26.7 ?/, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.  相似文献   

12.
Absorbing Film Assisted Laser Induced Forward Transfer (AFA-LIFT) is a modified LIFT method where a high absorption coefficient thin film coating of a transparent substrate is used to transform the laser energy into kinetic in order to transfer the “target” material spread on it. This method can be used for the transfer of biomaterials and living cells, which could be damaged by direct irradiation of the laser beam. In previous experiments, ∼50-100 nm thick metal films have been used as absorbing layer. The transferred material can also contain metal microparticles originating from the absorbing thin film and acting as non-desired impurities in some cases. The aim of our work was to study how the properties (number, size and covered area) of metal particles transferred during the AFA-LIFT process depend on film thickness and the applied fluence. Silver thin films with different thickness (50-400 nm) were used as absorbing layers and real experimental conditions were modeled by a 100 μm thick water layer. The particles transferred without the use of water layer were also studied. The threshold laser fluence for the complete removal of the absorber from the irradiated area was found to strongly increase with increasing film thickness. The deposited micrometer and submicrometer particles were observed with optical microscope and atomic force microscope. Their size ranged from 100 nm to 20 μm and depended on the laser fluence. The increase in fluence resulted in an increasing number of particles of smaller average size.  相似文献   

13.
报道了利用皮秒激光驱动产生瞬态类镍银X射线激光的实验结果.采用一路脉冲宽度为数百皮秒的激光作为预脉冲,配合另一路皮秒激光作为主脉冲联合驱动平面靶,获得了一定强度的类镍银X射线激光输出,输出能量约为5—10nJ. 关键词: 瞬态X射线激光 长短脉冲联合驱动 皮秒脉冲激光  相似文献   

14.
功率密度对中频磁控溅射制备 AZO薄膜性能的影向   总被引:1,自引:0,他引:1  
利用中频磁控溅射法在普通玻璃衬底上沉积掺铝氧化锌(ZnO ∶ Al,简称AZO)薄膜,通过调整溅射功率密度参数得到沉积速率与功率密度之间的关系,制备了不同厚度的AZO薄膜.利用台阶仪、XRD、XPS、紫外可见分光光度计和Hall测试系统等方法研究了功率密度与厚度对AZO薄膜结构、组分、光学和电学性能的影响.实验结果表明...  相似文献   

15.
李林娜  陈新亮  王斐  孙建  张德坤  耿新华  赵颖 《物理学报》2011,60(6):67304-067304
实验采用脉冲磁控溅射法制备铝掺杂氧化锌(AZO)薄膜.为了进一步提高AZO薄膜的光电性能,在溅射过程中加入一定流量的氢气,以高纯ZnO ∶Al2O3陶瓷靶为溅射靶材,制备AZO/H透明导电薄膜.通过测试薄膜的结构特性、表面形貌及其光电性能,详细地研究了氢气流量对AZO薄膜性能的影响.溅射过程中引入氢气,可以促进薄膜的晶化,提高薄膜的迁移率和透过率(400—1100 nm).采用纯氩气溅射制备AZO薄膜的电阻率为5.664×10-4 Ω·cm 关键词: 氧化锌 氢气流量 磁控溅射 太阳电池  相似文献   

16.
Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.  相似文献   

17.
Laser-induced forward transfer (LIFT) is a high resolution microprinting technique in which small amounts of material are transferred from a previously prepared donor thin film to a receptor substrate. The application of LIFT to liquid donor films allows depositing complex and fragile materials in solution or suspension without compromising the integrity of the deposited material. However, the main drawback of LIFT is the preparation of the donor material in thin film form, being difficult to obtain reproducible thin films with thickness uniformity and good stability.In this work we present a laser microprinting technique that is able to overcome the drawbacks associated with the preparation of the liquid film, allowing the deposition of well-defined uniform microdroplets with high reproducibility and resolution. The droplet transfer mechanism relies on the highly localized absorption of strongly focused femtosecond laser pulses underneath the free surface of the liquid contained in a reservoir.An analysis of the influence of laser pulse energy on the morphology of the printed droplets is carried out, revealing a clear correlation between the printed droplet dimensions and the laser pulse energy. Such correlation is interpreted in terms of the dynamics of the liquid displaced by a laser-generated cavitation bubble close to the free surface of the liquid. Finally, the feasibility of the technique for the production of miniaturized biosensors is tested.  相似文献   

18.
Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing patterns of diverse materials with a high degree of spatial resolution. In conventional LIFT a small fraction of a solid thin film is vaporized by means of a laser pulse focused on the film through its transparent holder, and the resulting material recondenses on the receptor substrate. It has been recently shown that LIFT can also be used to transfer materials from liquid films. This widened its field of application to biosensors manufacturing, where small amounts of biomolecules-containing solutions have to be deposited with high precision on the sensing elements. However, there is still little knowledge on the physical processes and parameters determining the characteristics of the transfers.In this work, different parameters and their effects upon the transferred material were studied. It was found that the deposited material corresponds to liquid droplets which volume depends linearly on the laser pulse energy, and that a minimum threshold energy has to be overcome for transfer to occur. The liquid film thickness was varied and droplets as small as 10 μm in diameter were obtained. Finally, the effects of the variation of the film to substrate distance were also studied and it was found that there exists a wide range of distances where the morphology of the transferred droplets is independent of this parameter, what provides LIFT with a high degree of flexibility.  相似文献   

19.
We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF (λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm−2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm−2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence (λ ∼ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.  相似文献   

20.
Thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO) were deposited on glass substrates by laser ablation in an oxygen environment. The electrical and optical properties of films grown at various oxygen pressures were compared. With no substrate heating, highly transparent and conducting films were obtained with oxygen pressures between 15 and 23 mTorr for both materials. We obtained a specific resistivity of 1.8᎒-3 Q cm for AZO and 1.1᎒-3 Q cm for ITO. By heating the substrate to 160 °C or 200 °C, the resistivity was further reduced to 1.1᎒-3 Q cm for AZO and 3.9᎒-4 Q cm for ITO. The average transmission of visible light (450-750 nm) was between 82% and 98% in most cases. The results suggest that AZO is a promising alternative to ITO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号