共查询到20条相似文献,搜索用时 78 毫秒
1.
《光学学报》2016,(11)
为了进一步实现傅里叶变换红外光谱仪的微小型化,在基于多级微反射镜的傅里叶变换红外光谱仪结构中引入空间光调制器与点探测器。利用多级微反射镜对入射光场进行相位调制,同时利用空间光调制器对各干涉级次进行分布式测量。将两个多级微反射镜作为两个相位衍射屏并将空间光调制器作为振幅衍射屏,分析光波与每一个衍射屏的作用,发现干涉光场受到空间光调制器和多级微反射镜边缘衍射光场的调制。多级微反射镜边缘对入射光的截止产生了衍射效应,为了抑制该衍射效应对系统的影响,提出了一种扩展多级微反射镜阶梯级数的方法。该方法通过扩大干涉区域,避免了边缘衍射效应对内部有效干涉级次的影响。计算表明,该方法可以消除干涉图序列的失真,有效实现信号光谱复原。 相似文献
2.
3.
4.
为了明确像场调制傅里叶变换成像光谱仪的工作机理,通过分析多级微反射镜对成像光场的相位调制特性,建立了像场调制干涉成像的理论模型。数值计算结果表明,通过对获得的干涉图像数据立方体进行图像剪切与图像拼接,可以重构目标场景的全景图像;通过对剪切后的干涉图像单元进行条纹拼接与光谱解调,可以复原场景中各目标物点的光谱信息。为了验证该仪器的工作原理,利用研制的样机进行了目标场景的干涉成像扫描实验,获取了场景目标的干涉图像数据立方体。通过对各帧干涉图像进行边缘检测与特征配准,实现了干涉图像单元的剪切与全景图像的拼接。同时,通过对干涉图像单元进行条纹拼接、基线校正、寻址切趾与离散傅里叶变换,获得了特征目标的复原光谱,并通过非均匀采样校正与经验模态分解对光谱进行优化,提高了复原光谱的性能。 相似文献
5.
为了进一步实现傅里叶变换光谱仪的微小型化,在基于多级微反射镜的傅里叶变换光谱仪结构中引入微透镜阵列,利用微透镜阵列对由多级微反射镜调制的各级次的干涉光场单元进行同步收集。光场相位采用空间调制的方式,因此系统的波前像差会导致各级次干涉光场单元的子波前产生不同程度的畸变。建立含有波前像差的光场与多级微反射镜和微透镜阵列相互作用的标量衍射理论模型,计算表明波前像差会导致各级次干涉像点的强度产生不同程度的衰减,同时在复原光谱中引入低频噪声。通过分析发现,干涉像点强度的衰减是各干涉光场单元子波前像差的斯特列尔比调制的结果,且复原光谱中的低频噪声主要源于斯特列尔比的傅里叶谱。根据波前像差对干涉图像的调制特点,提出了一种利用波前像差的斯特列尔比对干涉光强进行修正的方法,计算表明该方法可以使复原光谱的失真得到有效改善。 相似文献
6.
提出了一种基于多级微反射镜的静态化新型红外傅里叶变换成像光谱仪结构。系统不含狭缝和可动部件,因此光通量大、结构稳定。介绍了该成像光谱仪的工作原理和光程差的产生方式。根据系统原理对后置成像光学系统进行了分析与设计。结果表明:在-20℃~60℃的温度范围内,系统成像质量良好。全视场传递函数在CCD奈奎斯特频率17lp/mm处大于0.6。系统的均方根(RMS)最大光斑直径小于12μm,系统单个像元能量集中度大于80%,冷光阑匹配效率接近100%。以RMS光斑直径变化为标准,计算了系统的公差灵敏度矩阵,计算结果表明,后置成像系统0视场光斑尺寸小于16μm的可能性为97.7%。 相似文献
7.
8.
高分辨率傅里叶变换成像光谱仪具有高空间分辨率和高光谱分辨率的特点,但光谱重建时间冗长。通过对傅里叶变换光谱重建流程分析,为研制的1024pixel(光谱维)×1024piexl(像宽)×1024piexl(像高)高分辨率紫外傅里叶变换成像光谱仪的数据立方体反演,设计了一种并行优化算法。实验表明,在6核处理器上对512M和2G的数据立方体进行变换,时间分别只需88.33s和489.75s,加速比分别为3.70和3.04,大幅度提高了运算效率。如将该算法应用到更多内核处理器上,可得到更高的加速比和更少的运算时间。 相似文献
9.
10.
11.
为了实现傅里叶变换成像光谱仪的静态化与高通量,提出一种基于多级微镜的时空混合调制成像光谱仪,其干涉系统是利用一个多级微镜代替迈克尔逊干涉仪中的平面镜,其显著特点是无运动部件和限制系统光通量的狭缝,可同时获得目标的干涉图与二维空间图像。该成像光谱仪利用前置成像系统将目标成像到干涉系统的平面镜与多级微镜上,利用多级微镜的结构特点对两成像光束的光程差进行调制,然后通过后置成像系统获得不同干涉级次的目标图像。首先通过对该成像光谱仪干涉系统光谱信噪比的分析,明确了光谱信噪比与图像信噪比之间的关系,确定了多级微镜的特征参数。为了确保每个阶梯面所对应光程差的恒定性,通过对前置成像系统成像过程的分析,确定了前置成像系统像方远心的光路结构;通过对系统视场角与光程差之间关系的分析和计算,确定了前置成像系统的设计指标并完成了光学设计。为了保证后置成像系统不引入额外的光程差,通过对后置成像系统成像特点的分析,确定了后置成像系统双远心的光路结构;通过对系统入射孔径角与阶梯级数之间关系的分析和计算,最终设计出满足系统性能需求的后置成像系统。通过对各单元系统的理论分析与光学设计,为静态化与高通量成像光谱仪的发展提供了一种新的思路。 相似文献
12.
提出了一种基于静态干涉系统的中长波红外双谱段时空联合调制傅里叶变换成像光谱仪(FTIS),分别对前置望远系统及后置成像系统进行了设计。根据像差理论,通过添加约束的方式计算了反射式前置望远系统的初始结构,通过光学设计软件优化,矫正了系统中倾斜分束器和补偿器带来的大数量级像散和彗差;在中波和长波双谱段范围内,前置系统的调制传递函数(MTF)均接近衍射极限。该光谱仪的两个后置成像系统均采用透射式结构,点列图结果显示,后置系统成像像斑均方根(RMS)值在双谱段范围均小于7.0μm。将前置望远系统和后置成像系统进行对接,最终得到了视场角为1.5°,中波通道F数为4,长波通道F数为2的整体光学系统。在双谱段范围内,整体系统的点列图RMS值小于10.7μm,MTF在探测器的特征频率17lp/mm处大于0.5,具有良好的成像效果。 相似文献
13.
14.
15.
针对由非线性光程差恢复出的光谱会出现附加频率噪声而导致复原谱线加宽,严重影响光谱质量,为此提出一种仅对特征光源进行一次测量即能完成干涉图非线性光程差校正及波长定标的方法。通过对特征光源的单次测量可获得干涉图,计算干涉图中包含的非线性相位与大致中心频率,并计算相对光程差,进而获得光程差与采样点之间的非线性映射关系,最终通过二次采样实现非线性光程差的校正。以静态双折射傅里叶变换光谱仪为例,首先构建系统的非线性光程差模型,给出非线性光程差的校正方法及其原理,然后采用汞氩灯作为特征光源进行实验验证,通过获取的干涉图提取汞氩灯的特征谱线,分析出不同波长下其对非线性光程差的影响,最后对非线性光程差进行校正和波长定标。实验结果表明,经所提方法校正后,546.074 nm波长处谱线的半峰全宽由未校正的9.08 nm变为4.14 nm,说明所提方法有效提升了光谱仪的分辨率与准确度。 相似文献
16.
相位修正是傅里叶变换成像光谱仪光谱复原的关键技术之一,针对现有算法对带有噪声的干涉图相位修正不足的问题,文章提出了一种基于模拟退火算法求解相位误差的修正方法.该方法通过控制相位下降函数,利用相位区间内产生的随机相位值修正干涉图数据得到同标函数值,依据Metropolis准则判断目标函数增最以确定相位最优解.该算法仿真结... 相似文献
17.
提出了一种新型的基于可编程MEMS(micro-electro-mechanical systems)微镜的微型傅里叶变换红外光谱仪。该光谱仪采用可编程MEMS微镜和倾斜反射镜替代了传统傅里叶变换光谱仪的动镜系统。理论分析了该光谱仪的工作原理,并进行了计算机仿真,验证了该方法的可行性。结果表明,该光谱系统能够准确地还原光谱信息,其光谱分辨率在近红外区域小于5 nm,波长准确性约1 nm,系统理论上的信号采集周期约50 ms。适合于利用阿达玛变换提高信噪比,可应用于微量物质检测。 相似文献
18.
静态傅里叶变换光谱仪的反射镜采取微阶梯反射镜,使光谱仪可在无需空间驱动装置的前提下实现空域上各级次的同时采样。通过理论研究和对测试数据的对比分析,确定使用楔形玻璃条制作微阶梯反射镜。此方法采用常规光学零件加工工艺制作1个楔形玻璃块和10个楔形玻璃条,然后按序选取楔形玻璃条,并逐一光胶在楔形玻璃块的斜面上,且相邻楔形玻璃条的接触面用紫外胶固连;水平方向反复推动相邻后一个楔形玻璃条直到检测仪器测量出相邻楔形玻璃条的阶梯厚度差达到要求为止;用紫外灯固化紫外胶;重复以上步骤制作出所需台阶数目的微阶梯反射镜。和别的制作方法相比,此方法安全性和可行性高,而且具有一致性、台阶厚度可控特点,可制作出台阶高度误差为0.124 μm、表面粗糙度为12 nm的微阶梯反射镜,达到系统设计要求。 相似文献
19.
根据刑侦、物证等领域的应用要求,研制了一种工作波段为254~380nm的大孔径傅里叶变换成像光谱仪。该系统采用具有高光通量的时间-空间调制型结构以解决现有系统能量不足的问题。系统采用像平面式干涉仪与全反射式Offner成像镜相配合的方案,可实现干涉图上光程差近似线性分布。其在紫外波段最大可获得光程差与空间调制型干涉结构相同,理论最大波数分辨率为80cm-1。系统前置物镜、分光立方体为熔石英材质,成像镜为全反射系统,在全工作波段内具有较高透射率。实验结果表明,系统可获取工作波段短波端附近的原始干涉图,能正确采集及重构目标的紫外波段光谱数据立方体;在使用汞灯照明时,可正确识别365nm处发射峰。 相似文献