共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
基于眼底图像的视网膜血管精确分割对眼科疾病诊断意义重大。但视网膜血管结构高度复杂,多尺度及前、背景比例失衡,自动分割困难。因此,本文提出自适应补偿网络(SACom)实现端到端的视网膜血管精确分割。SACom以U型网络为基本框架,首先在编码器端引入可变形卷积提高复杂血管结构信息学习能力;然后在U型网络底部设计自适应多尺度对齐上下文模块提取并聚合多尺度上下文信息,对齐上下文特征;最后在解码器端设计协同补偿分支,融合多级输出提升模型的映射能力,实现精细分割。实验结果表明,SACom可有效提高视网膜血管的分割精度,在DRIVE、CHASE_DB1和STARE三个公共数据集上的准确率分别达到0.9695、0.9763和0.9753,灵敏度分别达到0.8403、0.8748和0.8506,曲线下面积(AUC)分别达到0.9880、0.9917和0.9919。 相似文献
5.
《光学学报》2018,(11)
彩色眼底图像视网膜血管分割对于临床医学诊断有重要价值。提出了一种基于改进卷积神经网络的视网膜血管分割方法。首先,将残差学习和密集连接网络(DenseNet)相结合,更充分地利用每一层的特征;通过增加短连接的方式,缩短了低层特征图到高层特征图之间的路径,强化了特征的传播能力。其次,为了提取更多细小血管,在编码器-解码器结构的网络中加入了空洞卷积,在不增加参数的情况下增加感受野。实验结果表明,与现存其他深度学习方法相比,所提出网络结构的参数数量更少,在DRIVE标准数据集上平均准确率达到0.9556,灵敏度达到0.8036,特异性达到0.9778,受试者工作特性(ROC)曲线下的面积(AUC)达到0.9800,比现存其他深度学习方法的分割效果更优。 相似文献
6.
视网膜血管的自动分割在糖尿病和高血压等疾病的诊断中起着重要作用.针对现有算法在细小血管和病变区域血管分割能力不足的问题,提出了一种基于改进整体嵌套边缘检测(HED)网络的视网膜血管分割算法.首先,采用了一种残差可变形卷积块代替普通卷积块,增强模型捕获血管形状和尺寸的能力;其次,采用扩张卷积层取代原有的池化层,用以保留血... 相似文献
7.
8.
9.
提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法,无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络,将高层语义信息和低层特征信息进行融合;利用残差块进一步学习细节和纹理特征;利用不同空洞率的空洞卷积构建多尺度空间金字塔池化结构,进一步扩大感受野,充分结合图像上下文信息;采用类别平衡损失函数解决正负样本不均衡问题。实验结果表明,在DRIVE(Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)数据集上的准确率分别为95.46%和96.84%,敏感性分别为80.53%和82.99%,特异性分别为97.67%和97.94%,受试者工作特征(ROC)曲线下的面积分别为97.71%和98.17%。所提方法相较于其他方法性能更优。 相似文献
10.
提出了结合稀疏编码和空间约束的红外图像聚类分割新算法, 在稀疏编码的基础上融合聚类算法, 扩展了传统的基于K-means聚类的图像分割方法. 结合稀疏编码的聚类分割算法能有效融合图像的局部信息, 便于利用像素之间的内在相关性, 但是对于分割会出现过分割和像素难以归类的问题.为此, 在字典的学习过程中, 将原子的聚类算法引入其中, 有助于缩减字典中原子所属类别的数目, 防止出现过分割; 考虑到像素及其邻域像素具有类别属性一致性的特点, 引入了空间类别属性约束信息, 并给出了一种交替优化算法. 联合学习字典、稀疏系数、聚类中心和隶属度, 将稀疏编码系数同原子对聚类中心的隶属程度相结合, 构造像素归属度来判断像素所属的类别. 实验结果表明, 该方法能够有效提高红外图像重要区域的分割效果, 具有较好的鲁棒性.
关键词:
图像分割
稀疏编码
聚类
空间约束 相似文献
11.
提出了一种基于Parzen窗的半监督模糊C-均值(Semi-supervised Fuzzy C-Means Based on Parzen window,PSFCM)聚类算法。根据训练样本确定出模糊C-均值(Fuzzy C-Means,FCM)的初始聚类中心;利用Parzen窗法计算出测试样本对各类状态的隶属度后,重新定义了隶属度迭代公式。通过齿轮箱磨损实验台模拟了齿轮箱的2种典型磨损故障并采集了油样。选取实验油样光谱分析数据中代表性元素Fe,Si,B的浓度值作为分析数据集的3维特征量,分别进行了FCM聚类和PSFCM聚类分析。聚类结果为:FCM聚类的正确率为48.9%,而融入了监督信息的PSFCM聚类的正确率为97.4%。实验说明,将PSFCM算法引入到油液原子光谱分析,降低了对人为经验和大量故障数据的依赖,提高了齿轮箱磨损故障诊断的准确度。 相似文献
12.
13.
相邻障碍物的分割是无人驾驶领域的技术难点,低线激光雷达点云稀疏,无法聚类远距离物体,但激光雷达线束越多越昂贵。为了实现低成本聚类分割相邻障碍物,实验场景选取常用交通场景对象相邻的人/人、人/车,提出了一种基于多帧融合的相邻障碍物分割方法。基于惯性测量单元、激光雷达融合多帧点云,解决了低线激光雷达因分辨率低而无法聚类远距离相邻行人的问题。提出改进的欧式聚类,加入自适应阈值和向量角度约束两个新的分割标准,提高相邻障碍物的分割效果。实验结果表明,该方法具有成本低、聚类精准等特点,与单帧传统欧式聚类算法相比,该方法针对相邻障碍物分割的准确度提升约30.7%,对低线激光雷达在障碍物聚类以及后续的检测具有一定参考意义。 相似文献
14.
苹果的可见光谱目标的高效、精准识别是实现果园测产或机器自动采摘作业的关键,由于绿色目标果实与枝叶背景颜色较为相近,因此绿色苹果的识别成为新的挑战.再由于果园实际复杂环境因素影响,如光照、阴雨、枝叶遮挡、目标重叠等情况,现有的目标果实识别方案难以满足测产或自动采摘的实时、精准作业需求.为更好地实现果园自然环境中绿色目标果... 相似文献
15.
基于颜色迁移和聚类分割的偏振图像融合方法 总被引:2,自引:2,他引:0
为克服当前偏振图像融合方法存在的不足,提出了一种基于颜色迁移和聚类分割的偏振图像近自然彩色融合方法.该方法首先将偏振参量图像映射到HSI颜色空间,再得到初步的融合图像后将它变换到YIQ颜色空间,并采用颜色迁移技术对其进行颜色修正.通过将修正后的图像变换到HSI颜色空间,并利用对线偏振度图像进行模糊C-均值聚类分割的结果调整融合图像的色调和色饱和度.最后,将处理结果变换回RGB颜色空间,得到最终的图像融合结果.实验结果表明,利用该方法得到的融合图像不仅与人眼视觉感知习惯一致,而且显著增强了目标与背景的对比度. 相似文献
16.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。 相似文献
17.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。 相似文献
18.
针对视网膜血管形态结构和尺度信息复杂多变的特点,提出一种自适应血管形态结构和尺度信息的U型视网膜血管分割算法。首先采用二维K-L(Karhunen-Loeve)变换(即霍特林变换)综合分析彩色图像三通道的频带信息,从而得到视网膜灰度图像以及多尺度形态学滤波增强血管与背景的对比度信息。然后将预处理图像经U型分割模型对图像进行端对端训练,并利用局部信息熵采样进行数据增强。该网络编码部分的密集可变形卷积结构根据上下特征层信息有效地捕捉图像中多种尺度信息和形状结构,底部金字塔型的多尺度空洞卷积扩大局部感受野,同时解码阶段带有Attention机制的反卷积网络将底层与高层特征映射有效结合,解决权重分散和图像纹理损失的问题。最后通过SoftMax激活函数得到最终的分割结果。在DRIVE(Digital Retinal Images for Vessel Extraction)与STARE(Structured Analysis of the Retina)数据集上对该算法进行了仿真,准确率分别达到97.48%与96.83%,特异性分别达到98.83%与97.75%,总体性能优于现有算法。 相似文献
19.