首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于超像素仿射传播聚类的视网膜血管分割方法.首先对预处理后的图像提取Hessian最大本征值、Gabor小波、B-COSFIRE滤波特征,构建3维眼底图像像素特征;同时对眼底图像进行超像素分块,并采用一致性准则对所分的超像素块进行筛选,得到超像素候选块;把超像素候选块当作样本点,把候选块内的像素特征的统计平均值...  相似文献   

2.
提出一种非结构化点云特征线提取方法,其过程主要分为区域分割和特征检测两个阶段。在区域分割阶段,引入社会粒子群优化模糊C-均值聚类算法对点云数据进行区域聚类,得到边界清晰的各个分区,便于后续边界特征的提取;在特征检测阶段,对各个分区进行局部径向基函数曲面重构,以获取各个分区内采样点的曲率信息。提出基于平均曲率计算的局部特征权值,并通过局部特征权值和曲率极值法对特征点进行双重检测。并通过建立特征点的最小生成树构建特征曲线。对不同点云模型进行特征线提取实验,结果表明,本文方法既能够提取点云模型中的显著特征和尖锐特征,也能够很好地提取特征强度变化的曲线特征。  相似文献   

3.
对视网膜血管形态特征的分析有助于视网膜相关疾病的诊断.为了能够更准确地分割出视网膜血管,提出一种基于双流网络的分割视网膜血管的方法.首先用具有编码器-解码器结构的卷积神经网络分别对整个血管和细血管进行分割;再将所得到的两个预测图进行融合,对融合后的图像去除伪影和噪声,得到最终的血管分割图.由于单独对细血管进行了分割,因...  相似文献   

4.
基于眼底图像的视网膜血管精确分割对眼科疾病诊断意义重大。但视网膜血管结构高度复杂,多尺度及前、背景比例失衡,自动分割困难。因此,本文提出自适应补偿网络(SACom)实现端到端的视网膜血管精确分割。SACom以U型网络为基本框架,首先在编码器端引入可变形卷积提高复杂血管结构信息学习能力;然后在U型网络底部设计自适应多尺度对齐上下文模块提取并聚合多尺度上下文信息,对齐上下文特征;最后在解码器端设计协同补偿分支,融合多级输出提升模型的映射能力,实现精细分割。实验结果表明,SACom可有效提高视网膜血管的分割精度,在DRIVE、CHASE_DB1和STARE三个公共数据集上的准确率分别达到0.9695、0.9763和0.9753,灵敏度分别达到0.8403、0.8748和0.8506,曲线下面积(AUC)分别达到0.9880、0.9917和0.9919。  相似文献   

5.
彩色眼底图像视网膜血管分割对于临床医学诊断有重要价值。提出了一种基于改进卷积神经网络的视网膜血管分割方法。首先,将残差学习和密集连接网络(DenseNet)相结合,更充分地利用每一层的特征;通过增加短连接的方式,缩短了低层特征图到高层特征图之间的路径,强化了特征的传播能力。其次,为了提取更多细小血管,在编码器-解码器结构的网络中加入了空洞卷积,在不增加参数的情况下增加感受野。实验结果表明,与现存其他深度学习方法相比,所提出网络结构的参数数量更少,在DRIVE标准数据集上平均准确率达到0.9556,灵敏度达到0.8036,特异性达到0.9778,受试者工作特性(ROC)曲线下的面积(AUC)达到0.9800,比现存其他深度学习方法的分割效果更优。  相似文献   

6.
视网膜血管的自动分割在糖尿病和高血压等疾病的诊断中起着重要作用.针对现有算法在细小血管和病变区域血管分割能力不足的问题,提出了一种基于改进整体嵌套边缘检测(HED)网络的视网膜血管分割算法.首先,采用了一种残差可变形卷积块代替普通卷积块,增强模型捕获血管形状和尺寸的能力;其次,采用扩张卷积层取代原有的池化层,用以保留血...  相似文献   

7.
眼底图像血管分割对于分析糖尿病视网膜病变具有重要意义。本文分析了U-net[1]的网络结构,搭建了U-net网络模型,实现了基于卷积神经网络的眼底图像血管分割。在DRIVE数据库上的实验结果表明,DRIVE眼底图像数据库细小血管多而杂,依靠人眼分割极其困难,但U-net在对眼底图像血管分割上的特异性、灵敏度、准确率、处理速度等方面明显优于传统的眼底图像血管分割方法。  相似文献   

8.
《光学学报》2021,41(4):76-86
针对眼底视网膜血管细小、轮廓模糊导致血管分割精度低的问题,提出一种多尺度框架下采用小波变换融合血管轮廓特征和细节特征的视网膜血管分割方法。通过预处理增强血管与背景的对比度,在多尺度框架下提取血管轮廓特征和细节特征,并进行图像后处理;采用小波变换融合两幅特征图像,通过计算各尺度对应像素的最大值,得到血管检测图像,最后采用Otsu法进行分割。通过在DRIVE数据集上进行测试实验,得到平均准确率、灵敏度和特异度分别为0.9582,0.7086,0.9806。所提方法能够在准确分割血管轮廓的同时保留较多细小血管分支,准确率较高。  相似文献   

9.
郑婷月  唐晨  雷振坤 《光学学报》2019,39(2):111-118
提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法,无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络,将高层语义信息和低层特征信息进行融合;利用残差块进一步学习细节和纹理特征;利用不同空洞率的空洞卷积构建多尺度空间金字塔池化结构,进一步扩大感受野,充分结合图像上下文信息;采用类别平衡损失函数解决正负样本不均衡问题。实验结果表明,在DRIVE(Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)数据集上的准确率分别为95.46%和96.84%,敏感性分别为80.53%和82.99%,特异性分别为97.67%和97.94%,受试者工作特征(ROC)曲线下的面积分别为97.71%和98.17%。所提方法相较于其他方法性能更优。  相似文献   

10.
结合稀疏编码和空间约束的红外图像聚类分割研究   总被引:1,自引:0,他引:1       下载免费PDF全文
宋长新*  马克  秦川  肖鹏 《物理学报》2013,62(4):40702-040702
提出了结合稀疏编码和空间约束的红外图像聚类分割新算法, 在稀疏编码的基础上融合聚类算法, 扩展了传统的基于K-means聚类的图像分割方法. 结合稀疏编码的聚类分割算法能有效融合图像的局部信息, 便于利用像素之间的内在相关性, 但是对于分割会出现过分割和像素难以归类的问题.为此, 在字典的学习过程中, 将原子的聚类算法引入其中, 有助于缩减字典中原子所属类别的数目, 防止出现过分割; 考虑到像素及其邻域像素具有类别属性一致性的特点, 引入了空间类别属性约束信息, 并给出了一种交替优化算法. 联合学习字典、稀疏系数、聚类中心和隶属度, 将稀疏编码系数同原子对聚类中心的隶属程度相结合, 构造像素归属度来判断像素所属的类别. 实验结果表明, 该方法能够有效提高红外图像重要区域的分割效果, 具有较好的鲁棒性. 关键词: 图像分割 稀疏编码 聚类 空间约束  相似文献   

11.
提出了一种基于Parzen窗的半监督模糊C-均值(Semi-supervised Fuzzy C-Means Based on Parzen window,PSFCM)聚类算法。根据训练样本确定出模糊C-均值(Fuzzy C-Means,FCM)的初始聚类中心;利用Parzen窗法计算出测试样本对各类状态的隶属度后,重新定义了隶属度迭代公式。通过齿轮箱磨损实验台模拟了齿轮箱的2种典型磨损故障并采集了油样。选取实验油样光谱分析数据中代表性元素Fe,Si,B的浓度值作为分析数据集的3维特征量,分别进行了FCM聚类和PSFCM聚类分析。聚类结果为:FCM聚类的正确率为48.9%,而融入了监督信息的PSFCM聚类的正确率为97.4%。实验说明,将PSFCM算法引入到油液原子光谱分析,降低了对人为经验和大量故障数据的依赖,提高了齿轮箱磨损故障诊断的准确度。  相似文献   

12.
《光学技术》2021,47(1):37-44
血管形态的变化与疾病密切相关,血管直径是血管形态的主要参数之一,测量血管直径有助于疾病的筛查与预防。提出一种基于聚类算法的血管直径测量方法,对微血管进行测量。大多数显微血管图像(如光学显微成像或光声显微成像)中存在噪声,通过非线性变换函数对显微图像进行增强;使用训练后的U-Net网络模型进行图像分割;利用结合聚类算法以及射线算法的测量方法对分割得到的血管进行测量,得到血管直径。实验表明,算法与传统测量结果一致(P0.05),与传统算法相比,本算法的测量精度得到提升,将测量误差由4.21%降低至2.27%,满足血管测量的准确度需求。  相似文献   

13.
相邻障碍物的分割是无人驾驶领域的技术难点,低线激光雷达点云稀疏,无法聚类远距离物体,但激光雷达线束越多越昂贵。为了实现低成本聚类分割相邻障碍物,实验场景选取常用交通场景对象相邻的人/人、人/车,提出了一种基于多帧融合的相邻障碍物分割方法。基于惯性测量单元、激光雷达融合多帧点云,解决了低线激光雷达因分辨率低而无法聚类远距离相邻行人的问题。提出改进的欧式聚类,加入自适应阈值和向量角度约束两个新的分割标准,提高相邻障碍物的分割效果。实验结果表明,该方法具有成本低、聚类精准等特点,与单帧传统欧式聚类算法相比,该方法针对相邻障碍物分割的准确度提升约30.7%,对低线激光雷达在障碍物聚类以及后续的检测具有一定参考意义。  相似文献   

14.
苹果的可见光谱目标的高效、精准识别是实现果园测产或机器自动采摘作业的关键,由于绿色目标果实与枝叶背景颜色较为相近,因此绿色苹果的识别成为新的挑战.再由于果园实际复杂环境因素影响,如光照、阴雨、枝叶遮挡、目标重叠等情况,现有的目标果实识别方案难以满足测产或自动采摘的实时、精准作业需求.为更好地实现果园自然环境中绿色目标果...  相似文献   

15.
基于颜色迁移和聚类分割的偏振图像融合方法   总被引:2,自引:2,他引:0  
为克服当前偏振图像融合方法存在的不足,提出了一种基于颜色迁移和聚类分割的偏振图像近自然彩色融合方法.该方法首先将偏振参量图像映射到HSI颜色空间,再得到初步的融合图像后将它变换到YIQ颜色空间,并采用颜色迁移技术对其进行颜色修正.通过将修正后的图像变换到HSI颜色空间,并利用对线偏振度图像进行模糊C-均值聚类分割的结果调整融合图像的色调和色饱和度.最后,将处理结果变换回RGB颜色空间,得到最终的图像融合结果.实验结果表明,利用该方法得到的融合图像不仅与人眼视觉感知习惯一致,而且显著增强了目标与背景的对比度.  相似文献   

16.
针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。  相似文献   

17.
基于快速模糊C均值聚类算法的红外图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
 针对模糊C均值(FCM)聚类图像分割需要预先知道类别数及计算量较大的问题,提出了新的快速FCM改进方法。首先,利用边缘信息进行邻域搜索得到种子像素;通过区域生长快速获得区域分割类别数和对应的聚类中心值,并将图像分成确定类别的区域和未确定类别的区域;最后利用所得的聚类中心值和 FCM算法对未确定类别区域进行聚类。实验证明,本文提出的改进方法大大减少了计算量,显著提高了图像分割速度,而且由于聚类考虑了相邻像素点的关系,图像分割结果能够清晰地保留目标轮廓,提高了图像分割的质量。  相似文献   

18.
针对视网膜血管形态结构和尺度信息复杂多变的特点,提出一种自适应血管形态结构和尺度信息的U型视网膜血管分割算法。首先采用二维K-L(Karhunen-Loeve)变换(即霍特林变换)综合分析彩色图像三通道的频带信息,从而得到视网膜灰度图像以及多尺度形态学滤波增强血管与背景的对比度信息。然后将预处理图像经U型分割模型对图像进行端对端训练,并利用局部信息熵采样进行数据增强。该网络编码部分的密集可变形卷积结构根据上下特征层信息有效地捕捉图像中多种尺度信息和形状结构,底部金字塔型的多尺度空洞卷积扩大局部感受野,同时解码阶段带有Attention机制的反卷积网络将底层与高层特征映射有效结合,解决权重分散和图像纹理损失的问题。最后通过SoftMax激活函数得到最终的分割结果。在DRIVE(Digital Retinal Images for Vessel Extraction)与STARE(Structured Analysis of the Retina)数据集上对该算法进行了仿真,准确率分别达到97.48%与96.83%,特异性分别达到98.83%与97.75%,总体性能优于现有算法。  相似文献   

19.
视网膜血管分割在眼底图像分析中具有重要作用。结合多尺度Hessian矩阵滤波和线检测算子,提出了一种有效的血管检测方法。首先利用多尺度Hessian矩阵的特征值构建血管相似性函数,实现血管增强;然后采用改进的线检测算子,提取反映血管测度的特征;最后采用SVM实现血管检测。实验结果表明,该方法只需要较少的训练样本即可达到与其他方法相当的准确率,且在灵敏性上具有更好的性能。  相似文献   

20.
基于局部直方图的目标分割方法   总被引:2,自引:0,他引:2  
赵一帆  丁艳  刘藻珍 《光学技术》2002,28(4):309-310
图像分割是图像精确跟踪中的重要组成部分 ,是后续进行图像识别的基础。在介绍传统阈值分割方法的基础上 ,提出了一种应用序列图像跟踪、利用跟踪区域的局部直方图来计算分割阈值的方法。该方法利用相邻两帧图像数据的相关性 ,根据跟踪区域的灰度信息自动调节每帧图像的分割阈值 ,使在跟踪区域内的目标得到了较好的分割效果。运用该算法 ,不仅取得了良好的分割效果 ,而且结果证明该算法具有较强的自适应性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号