首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
A transistor has been considered in the form of three electrodes connected by graphene ribbons or by metal quantum wires (nanowires) that operate on the principle of the current control by the changing voltage at the central electrode (gate). The analysis has been carried out according to the Landauer–Datta–Lundstrom model in equilibrium approximation for electrodes while fixing their potentials. We have obtained linear models and nonlinear terms in the determining current, and calculated the nonlinear current–voltage performances of graphene nanoribbons.  相似文献   

2.
A surface-plasmon-polariton (SPP) wavelength splitter based on a metal–insulator–metal waveguide with multiple teeth is proposed. Using the transfer-matrix method, a plasmonic band gap is identified in the multiple-toothed structure, and the splitting wavelength of the SPP splitter can be easily adapted by adjusting the widths of the teeth and the gaps. The proposed wavelength splitter is further verified through finite-difference time-domain (FDTD) simulations, in which SPPs with incident wavelengths of 756 nm and 892 nm are successfully split and guided in opposite directions in the waveguide, with extinction ratios of 30 dB and 29 dB, respectively.  相似文献   

3.
4.
In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.  相似文献   

5.
In this work, we propose a new design of all-optical triplexer based on of metal–insulator–metal(MIM) plasmonic waveguide structures and ring resonators. By adjusting the radii of ring resonators and the gap distance, certain wavelengths can be filtered out and the crosstalk of each channel can also be reduced. The numerical results show that the proposed MIM plasmonic waveguide structure can really function as an optical triplexer with respect to the three wavelengths, that is, 1310, 1490, and 1550 nm, respectively. It can be widely used as the fiber access network element for multiplexer–demultiplexer wavelength selective in fiber-to-the-home communication systems with transmission efficiency higher than 90%. It can also be a potential key component in the applications of the biosensing systems.  相似文献   

6.
Novel band-stop filters with circular split-ring resonators based on the metal–insulator–metal(MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by the finite-difference timedomain(FDTD) method. The variation of the gap of the split ring can affect the transmission characteristics, i.e., the transmission spectrum of SPPs exhibiting a shift, which is useful for modulating the filter. Linear and nonlinear media are used in the resonator respectively. By varying the refractive index of the linear medium, the transmission properties can be changed obviously, and the effect caused by changing the incident intensity with a nonlinear medium is similar.Several resonant modes that are applicable can be enhanced by changing the position of the gap of the split ring. Thus, the transmission properties can be modulated by adjusting the size of the gap, varying the refractive index, and changing the incident intensity of the input light. These methods may play significant roles in applications of optical integrated circuits and nanostructural devices.  相似文献   

7.
A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semiempirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements.  相似文献   

8.
Gold nanoparticles (AuNPs)–polyvinylpyrrolidone (PVP)–graphene (Gr) nanohybrids were prepared by a facile one-pot green strategy. The obtained Au–PVP–Gr composites were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Then, a novel electrochemical sensor for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) is proposed based on cetyltrimethyl-ammonium bromide (CTAB) and Au–PVP–Gr modified glassy carbon electrode (GCE). Due to the synergistic effect of CTAB and Au–PVP–Gr, the developed sensor displays a wide linear range from 0.02 to 0.1 and 0.1 to 100.0 μM. A low detection limit of 0.009 μM was observed. Further, the sensitivity and selectivity of PVP–CTAB/Au–PVP–Gr/GCE was demonstrated by its practical application in the determination of TBHQ in real samples.  相似文献   

9.
A hybrid two-step attack scheme that combines the chosen-plaintext attack (CPA) and the known-plaintext attack (KPA) algorithms is proposed to acquire the secret keys of the optical cryptosystem based on double-random phase–amplitude encoding (DRPAE) technique. By implementing our presented attack, an opponent can obtain not only the estimated solutions of the two random phase keys but also the accurate solution of the amplitude modulator (AM), which is introduced to the encryption process and regarded as an additional key to enhance the security level of the DRPAE-based cryptosystem. The validity and effectiveness of this attack strategy is analyzed theoretically and then verified by computer simulations.  相似文献   

10.
Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military appli- cations, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of "transparent metal". The filter consisting of Al/SiO2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period.  相似文献   

11.
12.
We present a hybrid fluid–kinetic model for the hydrogenic atoms in the plasma edge that is implemented in SOLPS-ITER. A micro–macro decomposition of the kinetic equation leads to a fluid model with a continuity and parallel momentum equation (implemented in B2.5) coupled to a kinetic correction equation (implemented in EIRENE). We assess the hybrid model for a high recycling fixed background plasma. The hybrid approach leads to a reduction of the Central Processing Unit(CPU) time required to obtain the same statistical error as the full kinetic Monte Carlo (MC) simulation with approximate factors of 1.7, 4.9, and 1.9 for the particle, parallel momentum, and electron energy source, respectively. However, there is an increase in CPU time for the ion energy source. By comparing the results with our in-house plasma edge code, we conclude that the hybrid performance can be improved by adapting some default MC features in EIRENE.  相似文献   

13.
Suxing Luo  Yuanhui Wu  Hua Gou 《Ionics》2013,19(4):673-680
A voltammetric sensor for the determination of carbendazim was developed at a glassy carbon electrode modified with a hybrid nanomaterial (graphene oxide–multi-walled nanotubes/glassy carbon (GO–MWNTs/GC)). Its surface electrochemical property was studied with UV–Vis spectroscopy, TEM analysis, and electrochemical impedance spectroscopy. The electrochemical behavior of carbendazim was investigated on the modified electrode with cyclic voltammetry and differential pulse voltammetry. The influence of modifier dosage, buffer solution, pH, accumulation time, and scan rates on the determination was discussed. The results indicated that the reaction of carbendazim on the electrode was controlled by diffusion and was an irreversible process with two electrons. The effective area of GO–MWNTs/GC, anodic transfer coefficient, and apparent diffusion coefficient were calculated. The anodic peak current of carbendazim was linear with the concentration of carbendazim from 10 nM to 4 μM with a detection limit of 5 nM (S/N?=?3). The proposed sensor was successfully applied to the determination of carbendazim in soil and tap water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号