共查询到20条相似文献,搜索用时 23 毫秒
1.
A. E. Mucientes F. J. Poblete F. Santiago J. Casado 《Reaction Kinetics and Catalysis Letters》1997,62(2):293-297
The kinetics of oxidation of propane-1,3-diol by alkaline hexacyanoferrate (III) catalyzed by ruthenium trichloride has been
studied spectrophotometrically. A reaction mechanism involving the formation of an intermediate complex between the substrate
and the catalyst is proposed. In the rate-determining step this complex is attacked by hexacyanoferate(III) forming a free
radical which is further oxidized. 相似文献
2.
The reaction between quinol and alkaline hexacyanoferrate(III) at constant ionic strength gives p-benzoquinone. The rate of the reaction was first order in the concentrations of substrate, oxidant and alkali. The slow step of the reaction involves the formation of the p-benzosemiquinone radical, which was detected by esr spectroscopy as a five-line spectrum with peak intensity ratios of 14641.
(III) -. , . - , , 14641.相似文献
3.
The palladium(II) catalyzed oxidation of allyl alcohol by manganese(III) in acid medium is assumed to go via substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-determining step. The rates exhibit fractional order in allyl alcohol and first order each in [Mn(III)] and [Pd(II)]. The reaction constants involved in the mechanism are determined. 相似文献
4.
Anil K. Awasthi Santosh K. Upadhyay 《Monatshefte für Chemie / Chemical Monthly》1985,116(6-7):729-736
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN)
3–
6
] while that of acetaldehyde is proportional tok[Fe(CN)
3–
6
]/{k +k[Fe(CN)
3–
6
]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)]
T
in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.相似文献
5.
6.
The oxidation of halotoluenes by hexacyanoferrate(III) in aqueous acetic acid containing perchloric acid (0.5M) at 50°C gave the corresponding aldehyde as the major product, and a small amount of polymeric material. The order with respect to each of the reactants—substrate, oxidant, and acid—was found to be unity. Increasing proportions of acetic acid increased the rate of the reaction. The reaction was influenced by changes in temperature, and the activation parameters have been evaluated. The Hammett plot yielded a ρ+ value of ?1.8. A kinetic isotope effect kH/kD = 6.0 has been observed. The pathway for the conversion of the halotoluenes to the products has been mechanistically visualized as proceeding through the benzylic radical intermediate, formed in the rate-determining step of the reaction. The radical undergoes rapid conversion to the products. 相似文献
7.
Desai Saleem M. Halligudi Nirmala N. Nandibewoor Sharanappa T. 《Transition Metal Chemistry》2002,27(2):207-212
The kinetics of oxidation of CH2=CHCH2OH with KBrO3 in the presence of RuIII catalyst in aqueous acid medium has been studied under varying conditions. The active species of oxidant and catalyst were HBrO3 and [Ru(H2O)6]3+ respectively. The autocatalysis exhibited by one of the products, i.e., Br–, was attributed to the formation of a complex between the bromide ion and RuIII. A composite scheme and rate law were proposed. Reaction constants involved in the mechanism have been evaluated. 相似文献
8.
Summary The kinetics of the palladium(II) catalysed oxidation of acrylic, methacrylic and crotonic acid by vanadium(V), in acid medium at constant ionic strength exhibit zeroth order dependence on vanadium(V) and first order dependence on palladium(II) and the unsaturated acid. Complex formation between the palladium(II) species and the unsaturated acid, with possible exchange of chloride ion and hydrogen ion in two successive steps, was invoked. The reaction rate is determined by a rearrangement leading to elimination of chloride ion. A plausible mechanism is proposed. 相似文献
9.
Summary The kinetics of the ruthenium(III)-catalysed oxidation of aminoalcoholsviz. 2-aminoethanol and 3-aminopropanol by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The reactions are rapid initially, then follow a second order rate dependence with respect to each of the catalyst and the oxidant. The second order rate dependence with respect to ruthenium(III) was observed for the first time. The order in [Aminoalcohol] and [OH–] is unity in each case. A suitable mechanism, consistent with the observed kinetic data is postulated. 相似文献
10.
The kinetics of the oxidation of 2-methyl cyclohexanone and cycloheptanone with Fe(CN)6
3− catalyzed by RhCl3 in alkaline medium was investigated at four temperatures. The rate follows direct proportionality with respect to lower concentrations
of hexacyanoferrate(III) ion, but tends to become zero order at higher concentrations of the oxidant, while the reaction shows
first-order kinetics with respect to hydroxide ion and cyclic ketone concentrations. The rate shows a peculiar nature with
respect to RhCl3 concentrations in that it increases with increase in catalyst at low catalyst concentrations but after reaching a maximum,
further increase in concentration retards the rate. An increase in the ionic strength of the medium increases the rate, while
increase in the Fe(CN)6
4− concentration decreases the rate. 相似文献
11.
A. Mucientes Balado F. Santiago Jimenez F. J. Poblete Martín R. Varn Castellanos 《国际化学动力学杂志》1997,29(1):1-7
The kinetics of oxidation of butane-2,3-diol by alkaline hexacyanoferrate (III), catalyzed by ruthenium trichloride has been studied spectrophotometrically. The reaction rate shows a zero-order dependence on oxidant, a first-order dependence on |Ru(III)|T, a Michaelis-Menten dependence on |diol|, and a variation complicated on |OH−|. A reaction mechanism involving the existence of two active especies of catalyst, Ru(OH)2+ and Ru(OH)3, is proposed. Each one of the active species of catalyst forms an intermediate complex with the substrate, which disproportionates in the rate determining step. The complex disproportionation involves a hydrogen atom transfer from the α C(SINGLE BOND)H of alcohol to the oxygen of hydroxo ligand of ruthenium, to give Ru(II) and an intermediate radical which is then further oxidized. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 1–7, 1997. 相似文献
12.
G. A. Hiremath P. L. Timmanagoudar S. T. Nandibewoor 《Reaction Kinetics and Catalysis Letters》1998,63(2):403-408
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield
the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II)
and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived. 相似文献
13.
Under kinetically controlled conditions, phenanthrene is converted to 9-hydroxyphenanthrene by acid hexacyanoferrate(III) in 90% aqueous acetic acid. The value of –4.0 indicates that the reaction proceeds via the formation of a cation radical intermediate.
15* 相似文献
(III) 9- 90%- . =–4,00, -.
15* 相似文献
14.
The kinetics of oxidation of allyl alcohol byN-bromosuccinimide (NBS) has been studied at 35 °C in aqueous medium. The reaction shows first order dependence on bothNBS and allyl alcohol. In fairly high acid concentration, there is no change in the rate of the reaction but at low acid concentration, the rate is considerably enhanced. There is no primary salt effect. At varying mercuric acetate concentrations, the rate constant remains the same. But in the absence of mercuric acetate, the rate is enhanced. The kinetic parameters,E
a,Arrhenius factorA, H, G and S have been calculated. A rate law in agreement with experimental results has been derived. A mechanism is proposed.
Kinetik und Mechanismus der Oxidation von Allylalkohol mixN-Bromsuccinimid
Zusammenfassung Die Kinetik der Oxidation von Allylalkohol mitN-Bromsuccinimid (NBS) wurde bei 35 °C in wäßrigem Medium untersucht. Die Reaktion zeigt erste Ordnung gegenüberNBS und Allylalkohol. Bei relativ hoher Säurekonzentration zeigt sich keine Änderung der Reaktionsgeschwindigkeit, bei niedriger Säurekonzentration wird die Reaktionsgeschwindigkeit beträchtlich erhöht. Es wurde kein primärer Salzeffekt festgestellt. Bei varriierender Quecksilberacetatkonzentration bleibt die Reaktionsgeschwindigkeit gleich, bei Abwesenheit von Quecksilberacetat wird jedoch die Geschwindigkeitskonstante erhöht. Die kinetischen Parameter,E a, derArrheniusfaktorA, H , G und S wurden bestimmt. Ein Geschwindigkeitsgesetz in Übereinstimmung mit den experimentellen Befunden wurde abgeleitet und ein Mechanismus vorgeschlagen.相似文献
15.
Amita Agrawal Nidhi Sharma Som K. Mishra Prem D. Sharma 《Transition Metal Chemistry》1992,17(6):547-551
The second order kinetics of uric acid oxidation by hexacyanoferrate(III) in acetate buffers were studied by estimating oxidant
colorimetrically at 420 nm. Two moles of organic acid react with one mole of the oxidant and oxidation products are alloxan
and urea.
TMC 2661 相似文献
16.
Kietics of oxidation of phenylhydrazine and p-bromophenylhydrazine by hexacyanoferrate(III) in acidic medium have been studied. The reactions follow similar kinetics, being first order with respect to both hydrazine and exacyanoferrate(III) and inverse first order with respect to the hydrogen ion. Addition of hexacyanoferrate(II) has no retarding effect on the rate of oxidation. The effects of varying ionic strength, dielectric constant, and temperature on the reaction rates have been investigated. A plausible mechanism has been proposed to account for the experimental results. Benzene and bromobenzene have been identified as the oxidation products. 相似文献
17.
Anna Katafias Olga Impert Przemysław Kita Grzegorz Wrzeszcz 《Transition Metal Chemistry》2004,29(8):855-860
Oxidation of the trans-[Cr(cyca)(OH)2]+ complex, where cyca = meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by [Fe(CN)6 ]3- ion in strongly alkaline media, leading to [CrV O(cycaox )]3+ ion, has been studied using electronic and e.p.r. spectroscopy. The kinetics of the CrIII → CrIV transformation have been studied using a large excess of the reductant and OH- ion over the oxidant. The reaction is a second order process: first order in [CrIII] and [FeIII] at constant [OH-]. The second order rate constant is higher than linearly dependent on the OH- concentration. The mechanism of the reaction has been discussed. A relatively inert intermediate chromium(V) species was detected based on characteristic bands in the visible region and the e.p.r. signal at giso = 1.987 for the systems where an excess of oxidant was used. The hyperfine structure of the main e.p.r. signal is consistent with the d1 -electron interactions with four equivalent nitrogen nuclei and [CrV = O(cycaox)]3+ formula, where cycaox = oxidized cyca, can be postulated for the intermediate CrV complex. 相似文献
18.
The kinetics of electron transfer from mannitol to hexacyanoferrate(III), catalyzed by osmium(VIII), has been studied in alkaline medium. The substrate order is complex, whereas it is one with respect to the catalyst. The rate is independent of the concentration of oxidant. Also, the rate increases with increasing concentration of hydroxide ion in a complex manner. A kinetic rate law corresponding to the proposed mechanism has been suggested as follows:
where [Mtol] is for mannitol. The kinetic parameters have been evaluated and the value of K1 is in agreement with the value determined spectrophotometrically. 相似文献
19.
G.C. SoniG.D. Menghani 《Tetrahedron》1972,28(22):5567-5571
In the reaction between alkaline hexacyanoferrate(III) and malic acid catalysed by Os(VIII), the rate of hexacyanoferrate (III) disappearance was found to be proportional to the concentrations of malate ion, hydroxyl ion and Os(VIII), but independent of the concentration of hexacyanoferrate(III). The reaction was studied at different temperatures, various thermodynamic parameters ΔE, pZ, ΔS* etc were evaluated. 相似文献
20.
The kinetics of oxidation of 1,4-thioxane (1,4-oxathiane) by alkaline K3Fe(CN)6 have been studied in the presence of OsVIII as catalyst. The reaction is first order in hexacyanoferrate(III) and OsVIII. The order in thioxane and OH– is zero. While added salts and ethanol have a negligible effect on the oxidation rate, K4Fe(CN)6 retards it. On the basis of kinetic evidence, a mechanism has been proposed. 相似文献