首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We demonstrate that intermolecular interactions, controlled by both oxygen and styrene coverage, alter reaction selectivity for styrene oxidation on oxygen‐covered Au(111). Several partial oxidation products are formed—styrene oxide, acetophenone, benzoic acid, benzeneacetic acid, and phenylketene—in competition with combustion. The maximum ratio of the yields of styrene oxide to the total CO2 produced is obtained for the maximum styrene coverage for the first two layers (0.28 ML) adsorbed on Au(111) precovered with 0.2 ML of O. Furthermore, our reactivity and infrared studies support a mechanism whereby styrene oxidation proceeds via two oxametallacycle intermediates which, under oxygen‐lean conditions, lead to the formation of styrene oxide, acetophenone, and phenylketene. Benzoate, identified on the basis of infrared reflection absorption spectroscopy, is converted into benzoic acid during temperature‐programmed reaction. These results demonstrate the ability to tune the epoxidation selectivity using reactant coverages and provide important mechanistic insight into styrene oxidation reactions.  相似文献   

2.
This work presents a periodic density functional study of the epoxidation mechanism of ethylene on Au(111). It is found that, once atomic oxygen is adsorbed on the surface, partial oxidation to ethylene oxide becomes possible. Calculated transition state theory rate constants for the elementary steps involved in the reaction predict that the selectivity of Au(111) toward epoxide is of approximately 40% in good agreement with recent experimental findings for styrene epoxidation on Au(111).  相似文献   

3.
用H2O2氧化苯乙烯合成苯甲酸   总被引:2,自引:1,他引:1  
张敏  魏俊发  史真 《合成化学》2005,13(3):287-290,i004
摘要:以30%H2O2做为氧化剂,钨酸钠与含O双齿有机配体(草酸)形成的络合物为催化剂,在无有机溶剂、无相转移剂的条件下,研究了苯乙烯氧化制苯甲酸的反应。研究结果表明,最佳反应条件为:苯乙烯100.0mmol,n(钨酸钠):n(草酸):n(苯乙烯):n(30%H2O2)=2.0:3.2:100.0:440.0,于92℃反应24h,苯甲酸收率98.6%。用GC—MS跟踪了氧化过程中4种主要物质苯乙烯、1-苯基邻二醇、羟基苯乙酮及苯甲酸含量随反应时间的变化关系,提出了其主要氧化机理为苯乙烯经过环氧化反应、水解生成生成1-苯基邻二醇,1-苯基邻二醇再氧化为羟基苯乙酮、最后氧化为苯甲酸。  相似文献   

4.
The partial oxidation of olefins on Ag surfaces has been a long standing problem in surface science and is of great commercial interest. We present a temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS) study of the partial oxidation of styrene on Ag(111). The reaction products are CO2, water, styrene oxide, benzene, and benzoic acid. XPS gives evidence for two different reaction intermediates that we assign to an oxametallacycle and to benzoate. The oxametallacycle seems to be the precursor for both the formation of styrene oxide and the formation of benzoate, and thus, in addition to leading to styrene oxide, also leads to undesired byproducts. The benzoate reacts further to form CO2, benzene, and benzoic acid.  相似文献   

5.
A new layered MOF material [Co(Hoba)(2)·2H(2)O] (1) (H(2)oba = 4,4'-oxybis(benzoic acid)) has been synthesized and used as a highly recyclable heterogeneous catalyst for olefin epoxidation reactions. Both high conversion (96%) and high selectivity of epoxide products (96%) are achieved.  相似文献   

6.
负载型金基催化剂Au/Fe(OH)3催化苯乙烯环氧化反应   总被引:1,自引:0,他引:1  
用共沉淀法制备了Au/Fe(OH)3催化剂, 以叔丁基过氧化氢为氧化剂, 考察焙烧温度和金担载量等对苯乙烯环氧化反应的影响. 结果表明, 催化剂的焙烧温度、金担载量对苯乙烯环氧化反应有较大影响. 在室温下直接合成的质量分数为4.67%的Au/Fe(OH)3催化剂对苯乙烯环氧化反应显示了很好的催化活性, 于80 ℃反应3 h苯乙烯的转化率达到84.1%, 环氧苯乙烷的选择性达到71.5%. 通过X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和Mössbauer分析, 发现催化剂的催化活性与金的价态及铁的化学存在状态有很大关系. 离子态Au3+与载体Fe(OH)3的协同作用对苯乙烯环氧化反应显示出很好的催化活性.  相似文献   

7.
The Co(II) salt (nitrate, chloride)-induced acceleration of styrene epoxide (SE) consumption and oxidation by molecular oxygen in acetonitrile solutions of three- and four-component systems, SE–acetic acid–cobalt salt and SE–acetic acid–cobalt salt–aniline, was found and investigated. The heterolytic epoxide ring opening in SE and homolysis (oxidation) catalyzed by cobalt salts can be accomplished in the presence of acid co-catalyst. The competition between homolysis and heterolysis processes in the presence of metal-containing catalyst was discovered for the first time for this type of system. The cobalt catalyst is deactivated during the styrene epoxide conversion.  相似文献   

8.
溴化锌-卤化正四丁基铵高效催化合成苯乙烯环状碳酸酯   总被引:1,自引:0,他引:1  
溴化锌-卤化正四丁基铵二元催化剂高效催化合成苯乙烯环状碳酸酯, 当n-Bu4NI/ZnBr2摩尔比为2时, 在短时间内(30 min)可将苯乙烯环氧化物几乎完全转化为环状碳酸酯, 无其它副产物的生成. 在ZnBr2/n-Bu4NX的催化体系中加入Au/SiO2 氧化催化剂时, 能将苯乙烯直接氧化, 然后碳酰化实现“一锅法”制备环状碳酸酯. 在此合成路线中担载的纳米金催化第一步苯乙烯环氧化反应; ZnBr2/n-Bu4NBr催化第二步CO2环加成反应. 在温和的反应条件下(80 ℃, 1 MPa, 4 h)将环状碳酸酯的产率提高到42%.  相似文献   

9.
阳卫军 《分子催化》2012,(4):314-321
以苯乙烯、环己烯和反式二苯乙烯为烯烃底物,以双氧水、叔丁基过氧化氢和异丙苯过氧化氢为氧化剂,以苯环上对位和邻位氯取代的四苯基金属卟啉为仿生催化剂,对烯烃的催化环氧化反应进行了对比研究.讨论了不同氯取代位的四苯基金属卟啉对烯烃环氧化性能的影响.实验结果表明,在没有助催化剂存在下,邻位氯代的四(2,6-二氯苯基)铁(锰)卟啉对烯烃的环氧化具有优异的催化性能,烯烃底物的转化率和环氧选择性都比对位氯代的四苯基铁(锰)卟啉高,且反应条件温和.其中FeⅢ(TDCPP)Cl的催化性能最好,环氧化选择性最高,催化氧化苯乙烯时,环氧苯乙烷的选择性达到了90.4%.相同金属离子不同配体的金属卟啉传递氧原子的能力为TDCPP>T(p-Cl)PP>TPP.氧化剂的结构对环氧化物的选择性有较大影响.过氧键连有吸电子基团的异丙苯过氧化氢对环氧化物的选择性最高.根据实验结果,对金属卟啉催化环氧化机理进行了分析.  相似文献   

10.
The reaction mechanism for the styrene selective oxidation on the oxygen preadsorbed Au(111) surface has been studied by the density functional theory calculation with the periodic slab model. The calculated results showed that the process of reaction includes two steps: forming the oxametallacycle intermediate (OMME) and then producing the products. It was found that the second step, from OMME to product is the rate-controlling step, which is similar to ethylene selective oxidation on Ag. Importantly, the present density-functional-theory calculation results suggested that the mechanism via the OMME (2) (i.e. the preadsorbed atomic oxygen bound to the CH2 group involved in C6H5--CH=CH2) to produce styrene epoxide is kinetically favored than that of OMME (1).  相似文献   

11.
Partial oxidation of propene is promoted by Au following deposition of atomic oxygen (0.3 ML) via O3 decomposition on Au(111) at 200 K. Several partial oxidation products--acrolein, acrylic acid, and carbon suboxide (O=C=C=C=O)-are produced in competition with combustion to CO2 and H2O. Acrolein is the primary partial oxidation product, and it is further oxidized to the other products by excess oxygen. We propose that acrolein is derived from allyloxy intermediate that is formed via insertion of oxygen into the allylic C-H bond. While no propene epoxide formation is detected from oxidation of C3H6, a small amount of epoxidation is observed during reaction of C3D6 and CD3CH=CH2. These results are strong indications that small changes in the energy required for allylic C-H activation, in this case due to a kinetic isotope effect, may dramatically change the selectivity; thus, small modifications of the properties of oxygen on Au may lead to the more desirable epoxidation process. Our results are discussed in the context of the origin of activity of Au-based catalysts.  相似文献   

12.
Single-atom catalysts provide a pathway to elucidate the nature of catalytically active sites. However, keeping them stabilized during operation proves to be challenging. Herein, we employ cryptomelane-type octahedral molecular sieve nanorods featuring abundant manganese vacancy defects as a support, to periodically anchor single-atom Ag. The doped Ag atoms with tetrahedral coordination are found to locate at cation substitution sites rather than being supported on the catalyst surface, thus effectively tuning the electronic structure of adjacent manganese atoms. The resulting unique Ag–O–MnOx unit functions as the active site. Its turnover frequency reaches 1038 h−1, one order of magnitude higher than for previously reported catalysts, with 90% selectivity for anti-Markovnikov phenylacetaldehyde. Mechanistic studies reveal that the activation of styrene on the ensemble site of Ag–O–MnOx is significantly promoted, which can accelerate the oxidation of styrene and, in particular, the rate-determining step of forming the epoxide intermediate. Such an extraordinary electronic promotion can be extended to other single-atom catalysts and paves the way for their practical applications.

Manganese vacancy-confined single-atom Ag in cryptomelane nanorods efficiently catalyses Wacker oxidation of styrene derivatives.  相似文献   

13.
The kinetic regularities of the change in the concentration of tert-butyl hypochlorite in the presence of the binary system (BS) styrene epoxide??p-toluenesulfonic acid in a tert-butanol solution were studied using iodometry and HPLC and compared with the data obtained earlier for hydroperoxide decomposition. The expressions for the rates of transformation of ButOCl, epoxide, and ROOH in the BS through the reactant concentrations are of the same type (the first order for the acid and the zero order for epoxide, ButOCl, and ROOH) and indicate that the reactions are related to epoxide heterolysis. Dioxygen ceases ROOH decomposition in the BS but exerts no effect on the decrease in the concentration of ButOCl, which efficiently inhibits the O2 uptake in the BS and almost an order of magnitude retards the accumulation of benzaldehyde (the product of styrene epoxide oxidation) with a low (up to 15%) decrease in the heterolysis rate. The inhibition effect is due to the heterolytic interaction of ButOCl with the carbocation formed by the cleavage of the three-membered ring of protonated styrene epoxide. The introduction of ButOCl in the BS decreases the stationary concentration of the carbocation and, as a consequence, the stationary concentration of phenylcarbene responsible for O2 uptake.  相似文献   

14.
The reaction mechanism for the styrene selective oxidation on the oxygen preadsorbed Cu(111) surface has been studied by the density functional theory calculation with the periodic slab model. The calculated result indicated that the process includes two steps: forming the oxametallacycle intermediate (OMMS) and then producing the products. In addition, it was found that the second step, from OMMS to the product, is the rate‐controlling step, which is similar to the previous work of ethylene selective oxidation. The present result indicated that the selectivity towards the formation of styrene epoxide on Cu(111) is much higher than that on Au(111). More importantly, we found that the mechanism via the OMMS (2) (i.e., the preadsorbed atomic oxygen bound to the CH2 group involved in C6H5? CH?CH2) to produce styrene epoxide is kinetically favored than that of OMMS (1). We also found that the selectivity toward the styrene epoxide formation on Cu2O is similar to that of Cu(111). © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.  相似文献   

16.
研究了碳酸氢钠活化H<,2>O<,2>(BAP)体系对苯乙烯和不饱和脂肪酸甲酯的环氧化.分别考察了碳酸氢钠、表面活性剂、加料方式、反应时间、H<,2>O<,2>用量和反应温度对BAP体系H<,2>O<,2>分解和烯烃环氧化的影响.在n(苯乙烯):n(H<,2>O<,2>):n(NaHCO<,3>)=1:10:0.25,...  相似文献   

17.
Computational and experimental studies show that Fe(BPMEN)-catalyzed olefin oxidation has two (FeIII-OOH and FeV=O) oxidant species, which act with comparable activation barriers. The presence of water favors formation of an HO-FeV=O oxidant via water-assisted O-OH bond cleavage and leads to both epoxide and cis-diol products. In the absence of water, the oxidant is the FeIII-OOH [or (MeCN)FeIII-OOH], and oxidation mainly leads to epoxide. This conclusion differs from that derived from DFT investigations of iron-porphyrin-catalyzed olefin epoxidation, where the FeIII-OOH pathway is deemed too high in energy to be plausible. The difference between these two systems may lie in the more flexible coordination environment of the non-heme iron complex, which has an available adjacent coordination site that contributes to the activation of the peroxide in both wa and nwa pathways.  相似文献   

18.
Benzoic acid-doped titania electrodes were prepared from titanium alkoxide sols containing benzoic acid in order to examine the photocatalytic reaction of the fuel material concentrated on the titania surface of a photofuel cell electrode. This doping was developed in order to understand the physicochemical processes on the titania rather than to advance the practical use of the photofuel cells. The observed photocurrent and CO2 and H2O productions indicated that the oxidation of the benzoic acid enhanced the generation of electricity during the UV irradiation. Benzoic acid molecules should be oxidized by oxygen molecules and holes on the titania surface. The steam treatment of the electrodes improved the benzoic acid oxidation and the photocurrent because it promoted the titania densification and enhanced the interaction between the benzoic acid and titania. The benzoic acid-doped titania is a valid model of the fuel material concentrated in the porous titania when using benzoic acid as the fuel material. The contact between the benzoic acid and titania is important in order to obtain a high photofuel electric conversion.  相似文献   

19.
The macro-kinetics and pathway of styrene oxidation catalyzed by Co2+-exchanged X, using O2 as oxidant, were investigated. The effects of external diffusion, internal diffusion, the styrene concentration, O2 pressure, the catalyst concentration and the reaction temperature on the styrene oxidation reaction rate were examined. The results showed that the reaction rate of styrene oxidation was 0.19 order with respect to the styrene concentration, 0.64 order with respect to O2 pressure, and zero to first order with respect to the different catalyst concentration. The calculated activation energy for this reaction was 13.79 kJ/mol. On the other hand, the three products in the styrene oxidation reaction were, respectively, used as the reactant to examine the reaction pathway of styrene oxidation. The results revealed that styrene oxidation reaction occurred as two parallel reactions. One was the production of styrene oxide and the other was the production of benzaldehyde and formaldehyde with former partially oxidized to benzoic acid and the latter mostly oxidized to O2 and H2O. Published in Russian in Kinetika i Kataliz, 2009, vol. 50, No. 2, pp. 212–217. The article is published in the original.  相似文献   

20.
纳米二氧化钛催化苯乙烯环氧化反应的研究   总被引:5,自引:0,他引:5  
戚建英  杨启云 《分子催化》2000,14(4):294-296
通过烯烃的环氧化反应 ,可制得活泼的有机合成中间体——环氧化物 ,再通过选择性开环或功能团转化 ,可以方便地合成多种有价值的化合物 .因此 ,催化烯烃环氧化的反应得到广泛的研究 ,其中含钛催化剂具有较好的催化性能 ,如 Ti- ZSM- 5沸石 [1,2 ] 、Ti- ZSM- 1 1沸石[3 ,4 ] 在 H2 O2 存在下就有高的催化活性 ;α-和β- [Si W9Ti3 O4 0 ]10 -也有一定的催化活性 [5] ;Sharpless等人 [6]采用 Ti[OCH( CH3 ) 2 ]4和酒石酸二乙酯诱导体 ,可高选择性催化烯丙醇的不对称环氧化反应 .纳米 Ti O2 ,由于颗粒小 ,处于固体表面的原子多 ,表…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号