首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three different bonding modes in one molecule! The diazapentadienyl ligands in the title compound 1 adopt η1,η1-N,N-chelating plus η5-terminal, η1η1-N,N chelating plus η5-bridging, and novel η1-N plus η3-1-aza-allyl bonding modes. R=cyclohexyl.  相似文献   

3.
合成了2种砷的氨荒酸配合物As(S2CNCy2)2I (1)和As(S2CNC6H12)3 (2)。通过元素分析和红外光谱对其进行了表征,用X-射线单晶衍射测定了它们的晶体结构。配合物1的晶体属单斜晶系,空间群为P21/n,晶胞参数a=1.020 9(4) nm,b=1.468 0(5) nm,c=1.521 8(5) nm,β=92.135(5)°和Z=4。配合物2的晶体属三方晶系,空间群为R3,使用六方坐标,晶胞参数a=1.622 1(4) nm,c=2.119 4(6) nm,并有Z=6。测试结果表明,配合物1为单核结构,中心砷原子为五配位的三角双锥配位构型,此外,在该配合物分子间存在弱的As…S相互作用(As…S 0.351 2(4) nm),使得该配合物以弱桥连二聚体存在。在配合物2中,3个配体分别以双齿形式与砷原子配位,形成六配位的畸变三棱柱体结构。  相似文献   

4.
5.
6.
A hydrothermal reaction of a mixture of ZnCO3, phosphoric acid, 1, 10‐phenanthroline in H2O gave rise to large plates of a new zinc phosphate, [(C12H8N2Zn)2(HPO4)(H2PO4)2], I . The structure consists of ZnO3N2 distorted trigonal‐bipyramidal and PO4 tetrahedral units linked through their vertices to give rise to a zero‐dimensional molecular solid (monomer). The structure of the monomer appears to be similar to the secondary building unit (SBU) 4 = 1, commonly found in many fibrous zeolites. To our knowledge, this is the first time this building unit has been isolated. The structure, with a unique composition, is stabilized by hydrogen bond interactions between the terminal —OH groups forms a one‐dimensional molecular wire and also by strong π…π interactions between the 1, 10‐phenanthroline units. Photoluminescence studies show that there is a ligand‐to‐metal charge transfer (LMCT). Crystal data: orthorhombic, space group = Fdd2 (no. 43), a = 40.4669(1), b = 7.4733(2), c = 17.4425(5)Å, V = 5274.9(2)Å3, Z = 8.  相似文献   

7.
8.
The new organophosphorus proligand (OPPh2)(O2SMe)NR (R = C6H3Pri 2–2,6) (3) was prepared as a white crystalline solid by reacting the lithiated compound Li[Ph2P(O)NR] with MeSO2Cl in a 1:1 molar ratio. The precursor Ph2P(O)NHR (1), as well as its thio analogue Ph2P(S)NHR (2), were obtained in the reaction between the lithiated amine RNHLi and the corresponding organophosphorus chloride. All compounds were characterized by multinuclear (1H, 13C, and 31P) NMR spectroscopy. The molecular structures of 1–3 were established by single-crystal X-ray diffraction. A zigzag polymeric chain is formed in the crystals of 1 and 2 by hydrogen N–H···X (X = O, S) bonding, while the crystal of 3 contains discrete monomeric units with a syn–syn conformation of the O?P(C)2–N–S(C)(?O)2 skeleton.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

9.
Conclusions For B10H12L2, where L=NH3, C5H5N, or C9H7N, features of thermal transformations in the range 25–850°C and the composition of the pyrolysis products are determined. The latter are x-ray amorphous phases, containing nitride, carbide, boron carbide, boron, and carbon.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2481–2484, November, 1988.  相似文献   

10.
11.
The novel ternary solid complex Gd(C5H8NS2)3(C12H8N2) has been obtained from the reaction of hydrous gadolinium chloride, ammonium pyrrolidinedithiocarbamate (APDC), and 1,10-phenanthroline (o-phen · H2O) in absolute ethanol. The complex was described by an elemental analysis, TG-DTG, and an IR spectrum. The enthalpy change of the complex formation reaction from a solution of the reagents, Δr H m ϑ (sol), and the molar heat capacity of the complex, c m , were determined as being − 15.174 ± 0.053 kJ/mol and 72.377 ± 0.636 J/(mol K) at 298.15 K by using an RD496-III heat conduction microcalorimeter. The enthalpy change of a complex formation from the reaction of the reagents in a solid phase, Δr H m ϑ (s), was calculated as being 52.703 ± 0.304 kJ/mol on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of the formation reaction of the complex was investigated by the reaction in solution. Fundamental parameters, the activation enthalpy (ΔH ϑ ), the activation entropy (ΔS ϑ ), the activation free energy (ΔG ϑ ), the apparent reaction rate constant (k), the apparent activation energy (E), the preexponential constant (A), and the reaction order (n), were obtained by the combination of the thermochemical data of the reaction and kinetic equations, with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, Δc U, was determined as being −17588.79 ± 8.62 kJ/mol by an RBC-II type rotatingbomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m ϑ , and standard enthalpy of formation, Δf H m ϑ , were calculated to be −17604.28 ± 8.62 and −282.43 ± 9.58 kJ/mol, respectively. The text was submitted by the authors in English.  相似文献   

12.
13.
The new tris(perfluoroalkyl)borane carbonyls, (C2F5)3BCO and (C3F7)3BCO, were prepared by means of a novel synthetic route using commercially available precursors by reacting K[(C2F5)3BCOOH] and K[(C3F7)3BCOOH] with concentrated sulfuric acid in the last step. The carboxylic acids, K[(C2F5)3BCOOH] and K[(C3F7)3BCOOH], were prepared by oxidative cleavage of the C?C triple bonds in Cs[(C2F5)3BC?CPh] and Cs[(C3F7)3BC?CPh] in a two‐step process to yield K[(C2F5)3BCO? COPh] and K[(C3F7)3BCO? COPh] as isolable intermediates. Crystal structures were obtained of K[(C2F5)3BCO? COPh], K[(C2F5)3BCOOH] ? H2O, (C2F5)3BCO, K[(C3F7)3BCOOH] ? 2 H2O, and (C3F7)3BCO. In the crystal structures of (C2F5)3BCO and (C3F7)3BCO the C?O bond lengths are 1.109(2) and 1.103(5) Å, respectively, which are among the shortest observed to date. Tris(pentafluoroethyl)borane carbonyl and (C3F7)3BCO slowly decompose at room temperature to yield CO, difluoroperfluoroalkylboranes and perfluoroalkenes. The decomposition of (C2F5)3BCO was found to follow a first‐order rate law with Ea=107 kJ mol?1.  相似文献   

14.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

15.
The covalent radius of Au I is about 0.07 Å smaller than that of AgI. This was determined from the crystal structures of the isostructural complexes [N(PPh3)][{Au(C6F5)3(μ-PPh2)}2M] (M=Au (structure shown in the picture), Ag). These mixed AuIII–M phosphides were synthesized from [Au(C6F5)3(PPh2H)], the first gold complex to contain a secondary phosphane.  相似文献   

16.
17.
The reaction of CuBr2 with 1,10‐phen‐H2O (1,10‐phen = 1,10‐phenanthroline) gave two compounds: CuBr2(C12H8N2) and Cu3Br3(C12H8N2)2. Their structures have been characterized by single‐crystal X‐ray diffraction analysis, elemental analyses, thermogravimetric analyses (TGA) and measurement of variable temperature magnetic susceptibility. Crystal data for CuBr2(C12‐H8N2): monoclinic, space group P21/n, a = 0.9977(3) nm, b = 0.65138(14) nm, c = 1.8207(4) nm, β = 91.624(18)°, V = 1.1828(5) nm3, Z = 2. Crystal data for Cu3Br3(C12H8N2)2: monoclinic, space group C2/c, a = 1.00167(11) nm, b = 1.4523(4) nm, c = 1.6295(3) nm, β = 94.386(14)°, V = 2.3635(8) nm3, Z = 3.  相似文献   

18.
19.
A solid complex Eu(C5H8NS2)3(C12H8N2) has been obtained from reaction of hydrous europium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen⋅H2O) in absolute ethanol. IR spectrum of the complex indicated that Eu3+ in the complex coordinated with sulfur atoms from the APDC and nitrogen atoms from the o-phen. TG-DTG investigation provided the evidence that the title complex was decomposed into EuS. The enthalpy change of the reaction of formation of the complex in ethanol, Δr H m θ(l), as –22.214±0.081 kJ mol–1, and the molar heat capacity of the complex, c m, as 61.676±0.651 J mol–1 K–1, at 298.15 K were determined by an RD-496 III type microcalorimeter. The enthalpy change of the reaction of formation of the complex in solid, Δr H m θ(s), was calculated as 54.527±0.314 kJ mol–1 through a thermochemistry cycle. Based on the thermodynamics and kinetics on the reaction of formation of the complex in ethanol at different temperatures, fundamental parameters, including the activation enthalpy (ΔH θ), the activation entropy (ΔS θ), the activation free energy (ΔG θ), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained. The constant-volume combustion energy of the complex, Δc U, was determined as –16937.88±9.79 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m θ, and standard enthalpy of formation, Δf H m θ, were calculated to be –16953.37±9.79 and –1708.23±10.69 kJ mol–1, respectively.  相似文献   

20.
在无水乙醇中, 合成了组成为RE(C5H8NS2)3(C12H8N2) (RE=La, Pr, Nd, Sm~Lu) 的固态配合物. IR光谱表明配合物中稀土离子(RE3 )与吡咯烷二硫代氨基甲酸铵 (APDC)中的硫原子和1, 10-邻菲咯琳(o-phen) 中的氮原子均双齿配位; UV光谱显示配合物中o-phen与稀土离子之间的能量传递是主要过程, 配合物的最大吸收与o-phen相比有微小的红移; FS光谱表明配合物Sm(C5H8NS2)3(C12H8N2)和Eu(C5H8NS2)3(C12H8N2)具有很强的荧光性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号