首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
光催化制氢是一种十分绿色、环保可持续的产氢方式。为了构建高效的光催化体系,对光催化剂进行表面修饰可以提高反应分子的吸附/活化的能力和电荷转移的效率。在本文中,我们通过γ-射线辐射还原法一步合成了聚乙烯吡咯烷酮包裹的硫化镉(P-CdS)同质结纳米粒子,之后通过室温下的碱化后处理,将P-CdS表面的PVP水解成为具有羧酸根和铵根的MPVP,而Cd S的WZ-ZB同质结的晶体结构并未受到影响。一方面,由于MPVP在碱性溶液中的溶解度的提高,一部分MPVP溶解于溶液中,最终从MP-CdS表面去除,从而暴露出更多WZ-ZB同质结的活性位点。另一方面,水解后的MPVP保留在CdS表面,其羧酸根离子与CdS的配位作用,会影响到催化剂的价带结构,进而促进光催化析氢过程。在二者的协同作用下,当碱化NaOH浓度为1 mol·L-1时,MP-CdS-3碱化样品的光催化析氢速率达到477μmol·g-1·h-1,是未碱化样品的2倍。这种碱化后处理的策略简单且廉价,可以引申到合成一些PVP包裹的各类光催化剂的表面修饰当中,有利于促进硫化镉材料的光...  相似文献   

2.
采用有序介孔氧化硅为硬模板, 通过纳米浇筑法制备了由螺旋骨架构建的有序介孔硫化镉(CdS)光 催化材料. 该光催化材料具有约5 nm厚的超薄骨架和大的比表面积(238 m2/g), 能有效缩短光催化反应中 光生电荷迁移到表面进行反应的距离并同时提供更多的反应活性位点, 从而增强光催化性能. 通过原位化学沉积法将不同量的助催化剂硫化镍(NiS)沉积到有序介孔CdS表面, 得到了一系列超薄骨架有序介孔CdS/NiS复合光催化材料. 可见光照射下的光催化产氢活性测试结果表明, 负载适量NiS的有序介孔CdS具有显著增强的光催化产氢活性(3.84 mmol?h-1?g-1), 约为负载相同量NiS的普通商业化CdS材料(0.22 mmol?h-1?g-1)的17.5倍.  相似文献   

3.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

4.
开发高效、廉价的非贵金属助催化剂一直是光催化分解水产氢领域备受关注的研究热点.本文采用水热和煅烧法合成非贵金属CoP负载的CdS纳米棒复合光催化材料.当CoP负载的质量分数为15%时,CoP/CdS复合光催化剂的产氢性能最优,达4 729.38μmol·g-1·h-1,是单一CdS的83倍.产氢测试结果表明,CoP作为助催化剂可以有效地提升光生载流子的分离效率,从而提高光催化产氢性能.此外,本文还重点研究助催化剂CoP与CdS之间光生载流子分离、传输行为以及复合比例对CdS光催化产氢活性的影响规律及其光催化产氢活性增强机理.本工作为设计开发低成本、高效的光催化材料提供了新的策略.  相似文献   

5.
硫化镉(CdS)作为一种对可见光响应的窄带隙半导体(带隙宽度约为2.4 eV),具有合适的能带位置,近年来受到越来越多的重视.然而在光催化过程中,光生电子与空穴的快速复合极大地限制了CdS的实际应用,如何提高光生电子-空穴对的分离效率成为研究重点.一维CdS纳米棒(1D CdS NWs)具有较大的长径比,能快速有效地转移光生载流子.零维碳点(0D C-dots)是一种粒径在10 nm以下的新型纳米碳材料,其作为助催化剂能够加快光生载流子传递速率,可提高材料光催化性能.因此,通过C-dots对CdS NWs进行修饰并形成异质结,利用C-dots助催化剂的作用以提升CdS NWs的光催化性能,具有一定的可行性.本文成功构建了一种0D/1D碳点修饰CdS NWs异质结(C-dots/CdS NWs),并考察其光催化性能.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见(UV-Vis)吸收光谱等技术对系列C-dots/CdS NWs样品进行表征.研究发现,C-dots成功负载在CdS NWs的表面并形成异质结.通过测试系列样品在可见光照射下光催化降解罗丹明B(RhB)以及光催化产氢性能发现,C-dots的修饰能够有效增强CdS NWs的光催化性能,其中0.4%C-dots/CdS NWs表现出最佳的光催化降解RhB活性,其经可见光照射60 min即可实现对RhB的完全降解(相同条件下CdS NWs需要180 min).同时自由基捕获实验表明,·O_2~–是降解罗丹明B过程中的主要活性基团.在光催化产氢性能测试中,0.4%C-dots/CdS NWs样品表现出最高的光催化产氢能力,产氢速率可达1633.9μmol g~(-1) h~(-1),比纯CdS的(196.9μmol g~(-1) h~(-1))提高了8.3倍,并且C-dots/CdS NWs具有良好的稳定性.研究发现,在可见光照射下,C-dots/CdS NWs能够产生较强的光生电流,且形成的0D/1D C-dots/CdS NWs异质结具有良好的电子传输能力,实现了C-dots/CdS NWs光生电子与空穴的有效分离,从而增强了光催化性能.  相似文献   

6.
光催化水分解是一种经济而且可持续的利用太阳能来制备洁净能源氢气的方式,因此寻找和开发高效稳定的光催化剂已成为光催化产氢领域的研究热点.CdS因其具有高效、廉价、较负的导带位置等优点而引起人们的关注.然而,由于CdS镉本身光生电子/空穴对易复合,以及存在光腐蚀等不足,限制了其实际利用.为了提高CdS的光催化水分解产氢性质,人们开发了构建异质结和负载助催化剂等策略.近年来,ZnO,g-C_3N_4,TiO_2等半导体已被证实可以与CdS一起形成Ⅱ型异质结来促进光生电子和空穴的分离,进而提升光催化产氢性质.此外,传统的type Ⅰ型CdS/ZnS异质结也被证实能提高光催化产氢速率.研究表明,ZnS一方面能够钝化CdS表面态,另一方面ZnS半导体中存在缺陷能(VZn,IS),有利于转移CdS价带的空穴,最终大幅度提高了整个体系的光催化活性.在适用于CdS的各种助催化剂中,由于常用的Pt,Pd和Ru等贵金属的高成本严重限制了它们的实际应用,所以近年来基于过渡金属的各种非贵金属助催化剂(包括MoS_2,Ni_2P,FeP,Ni_3N,NiS,Ni(OH)_2等)得到了广泛的研究.我们采用原位化学沉积法将无定型的NiS助催化剂修饰在CdS/ZnS异质结表面,开发出廉价高效的NiS-CdS/ZnS三元产氢光催化体系.在该三元体系中,NiS和ZnS分别用于促进CdS导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的CdS的光生电子转移到NiS表面并应用于光催化产氢,而高能的CdS的光生空穴被应用于氧化牺牲剂Na2S和Na_2SO_3,最终实现了整个体系的高效光催化产氢活性及稳定性.我们首先利用水热合成法得到大量的CdS纳米棒,然后使用化学浴沉积法在CdS表面沉积一定量的ZnS壳层,制备出CdS/ZnS异质结.光照前,采用原位化学沉积法将NiS颗粒负载在CdS/ZnS表面.光催化产氢的性能测试表明,当初始加入镍盐(20 mmol/L)量为100μL时,所得样品N2(NiS-CdS/ZnS)产氢效率最高(574μmol·h~(–1)),分别是CdS/NiS,CdS/ZnS和CdS的16.2,5.6和38倍.复合材料的表观量子效率高达43.2%.由此可见,NiS助催化剂和CdS/ZnS异质结存在协同效应,实现了三元体系的高效的光催化产氢性能.瞬态光电流测试结果表明,ZnS和NiS的加入能有效地促进光生电子/空穴的分离和利用.X射线衍射结果表明,CdS以六方相的形式存在,负载ZnS和NiS之后没有明显变化.高分辨透射电子显微镜照片和元素分布证实了NiS-CdS/ZnS复合材料中ZnS和NiS富集在纳米棒表层,其中NiS没有明显晶格条纹.紫外-可见漫反射结果表明,NiS和ZnS的负载后,复合材料的吸收边和纯相的CdS相近,而加入NiS助催化剂使得复合催化剂的颜色变黑,进而增加了可见光的吸收.  相似文献   

7.
在n型TiO2纳米片表面原位沉积p型TiO2量子点构建了量子点自修饰的TiO2 p-n同质结(PNT-x), 并利用透射电子显微镜(TEM)、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 稳态荧光光谱(PL)、 拉曼光谱(Raman)、 紫外-可见漫反射光谱(UV-Vis DRS)、 电化学测试及电化学交流阻抗谱(EIS)对复合物的组成、 结构和光催化性能进行了表征和研究. 结果表明, PNT-x具有TiO2量子点自修饰的结构, 量子点和纳米片中分别含有金属缺陷和氧缺陷, 其含量随组成变化可控, 并使得PNT-x表现出p-n同质结的典型特征, 与n-n Ⅱ型同质结以及块状p-n同质结相比, PNT-x中费米能级相差更大, 界面内电场更强, 具有更高的电荷分离和传递效率. 光照下, 样品的光催化活性顺序为PNT-400>p-25>PNT-600>PNT-200>p-TiO2>n-TiO2, 其中PNT-400的光催化产氢速率高达41.7 mmol·g-1·h-1, 分别为n-TiO2纳米片、 Ⅱ型同质结和块状p-n同质结的4.3倍、 3.6倍和2.3倍, 并表现出优异的催化稳定性.  相似文献   

8.
结合异质结构建与共催化剂改性, 以花球状Ni(OH)2为前驱体, 经热磷酸化后得到Ni(PO3)2-Ni2P二元助催化剂, 借助超声化学合成法, 与CdS NPs复合, 形成非贵金属CdS基三元光催化材料Ni(PO3)2-Ni2P/CdS NPs. 以Na2S-Na2SO3为牺牲剂, 在可见光(λ>420 nm)照射下, 在不借助任何贵金属的情况下, 负载量为8%(质量分数)的Ni(PO3)2-Ni2P/CdS NPs复合材料的光催化产氢速率达到4237 μmol·g?1·h?1, 为CdS NPs(217 μmol·g?1·h?1)的19倍. 在产氢循环实验中, 反应进行到第6次循环(18 h)后, 复合材料的产氢速率约为初始的89%, 具有较好的稳定性. 与CdS NPs相比, Ni(PO3)2-Ni2P/CdS NPs的吸收边明显红移, 禁带宽度降至1.86 eV, 并降低了H+还原的过电位, 显示出增强的光吸收性能和适宜的带隙结构. 通过Ni(PO3)2-Ni2P与CdS NPs之间的协同效应, 有效促进了光生载流子的分离, 提高了产氢活性和稳定性.  相似文献   

9.
研究了在H2S碱性溶液中,CdS粉末催化剂存在时,光催化分解H2S释氢和生成硫反应。考察了阴离子表面活性剂——十二烷基硫酸钠(SDS)对催化剂的表面性质和催化活性的影响。通过模拟该反应体系,用电化学方法测定了单晶CdS电极在上述反应体系中加入SDS(浓度低于临界胶团浓度CMC值)后的平带电位的变化。结果表明:单晶CdS电极的平带电位,由于该体系加入SDS而正移,与n型多晶半导体CdS在加入SDS的H2S碱性溶液中,光催化分解H2S的释氢量减少相一致。并探讨了在该体系中,由于表面活性剂的阴离子与S2-在单晶CdS电极表面上的竞争吸附,而引起单晶CdS电极的平带电位正移。  相似文献   

10.
利用太阳能将水转化为清洁可持续的化学燃料是一种很有前途的策略.光催化水分解制氢技术是有效解决能源可持续发展和环境保护问题的重要技术.CdS由于具有较窄的带隙(2.4 eV)和合适的能带位置而被认为是最有潜力的光催化水产氢催化剂之一.然而,CdS强光的腐蚀性和快速的电子空穴复合导致光催化剂活性低、稳定性差,严重阻碍了CdS光催化剂的广泛应用.为了有效提高光催化产氢活性及稳定性,人们对CdS光催化剂进行了大量改性研究.其中,合理巧妙地加载助催化剂和构造纳米结构CdS被认为是两种极为重要的改性策略,两种策略的有效耦合可以更有效地利用太阳能,实现清洁氢燃料的生成.一方面,各种形貌的CdS光催化剂均已被开发,例如纳米线、纳米棒、纳米片和量子点等.然而,由于制备工艺复杂,在以往的报道中很少有超薄2D CdS纳米片用于光催化产氢.另一方面,由于贵金属(Ag,Pt,Au)的稀缺性和高成本阻碍了其修饰光催化剂的实际应用,所以利用非贵金属助催化剂(MoSx,CuS,Ni3C,WS2,NiS,MXene,CoxP和MoP)修饰CdS提高光催化产氢活性近年来备受关注.对于地球丰富的2D层状助催化剂Cu7S4而言,具有优异的光电催化产氢活性和简单制备方法,但是在光催化产氢领域的应用上未引起足够重视.因此,本文充分利用超薄CdS纳米片以及Cu7S4纳米片各自的独特优势,构建了独特的2D-2D层状异质结,实现了高效协同光催化产氢.我们首先以乙酸镉和硫脲为原料通过一步水热法合成了超薄2D CdS纳米片,并用静电自组装方法制备了CdS/Cu7S4.在可见光下进行了产氢测试,实验结果证实了优化的2D CdS/2%Cu7S4层状异质结在含有Na2S·9H2O和Na2SO3的水溶液中光催化析氢活性最高(27.8 mmol g^-1 h^-1),是原始CdS纳米片(2.6 mmol g^-1 h^-1)的10.69倍.经过4次连续循环反应,CdS/Cu7S4二元复合体系展现出良好的稳定性.为深入探讨高效产氢机制,对纳米级CdS复合材料的光催化物化性能及载流子分离机制进行了表征.通过X射线衍射确定了CdS和CdS/Cu7S4的晶体结构.用高分辨电子显微镜和X射线光电子能谱证实合成了CdS催化剂和Cu7S4助催化剂的超薄纳米片结构且成功复合.用紫外-可见漫反射光谱法对制备的纯CdS和CdS/Cu7S4复合样品的光吸收特性进行了表征.结果表明,在CdS上负载Cu7S4以后,可以明显观察到样品对可见光的吸收能力明显增强.对CdS/Cu7S4进行XPS测试分析,进一步证明了样品中S、Cd和Cu的化学成分和状态.利用PL发射光谱研究了CdS/Cu7S4光催化剂的电荷载流子复合和转移行为.进一步对纯CdS和CdS/Cu7S4复合光催化剂的瞬态光电流响应(I-t曲线)进行了研究,确定了光生载体的分离效率.阻抗是深入研究电荷载流子迁移和界面转移的最有力技术,利用阻抗技术证实CdS/Cu7S4界面高效的载流子分离性能.极化曲线结果表明,加入Cu7S4可以降低CdS的产氢过电势,因此加速表面产氢动力学.由此可见,本文所构建的2D-2D CdS/Cu7S4二元层状异质结可以同时实现光生电子空穴对的快速分离、电子的转移和增加光生电子在表面利用效率,从而最大幅度地提高其光催化水分解产氢活性.本文所采用基于CdS纳米片的2D-2D界面耦合策略可以作为一种通用策略扩展到各种传统半导体纳米片的改性,从而极大地推进高效光催化产氢材料的持续进步.  相似文献   

11.
Organic photocatalysts have attracted attention owing to their suitable redox band positions, low cost, high chemical stability, and good tunability of their framework and electronic structure. As a novel organic photocatalyst, PDI-Ala (N, N'-bis(propionic acid)-perylene-3, 4, 9, 10-tetracarboxylic diimide) has strong visible-light response, low valence band position, and strong oxidation ability. However, the low photogenerated charge transfer rate and high carrier recombination rate limit its application. Due to the aromatic heterocyclic structure of g-C3N4 and large delocalized π bond in the planar structure of PDI-Ala, g-C3N4 and PDI-Ala can be tightly combined through π–π interactions and N―C bond. The band structure of sulfur-doped g-C3N4 (S-C3N4) matched well with PDI-Ala than that with g-C3N4. The electron delocalization effect, internal electric field, and newly formed chemical bond jointly promote the separation and migration of photogenerated carriers between PDI-Ala and S-C3N4. To this end, a novel step-scheme (S-scheme) heterojunction photocatalyst comprising organic semiconductor PDI-Ala and S-C3N4 was prepared by an in situ self-assembly strategy. Meanwhile, PDI-Ala was self-assembled by transverse hydrogen bonding and longitudinal π–π stacking. The crystal structure, morphology, valency, optical properties, stability, and energy band structure of the PDI-Ala/S-C3N4 photocatalysts were systematically analyzed and studied by various characterization methods such as X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, ultraviolet visible diffuse reflectance spectroscopy, electrochemical impedance spectroscopy, and Mott-Schottky curve. The work functions and interface coupling characteristics were determined using density functional theory. The photocatalytic activities of the synthesized photocatalyst for H2O2 production and the degradation of tetracycline (TC) and p-nitrophenol (PNP) under visible-light irradiation are discussed. The PDI-Ala/S-C3N4 S-scheme heterojunction with band matching and tight interface bonding accelerates the intermolecular electron transfer and broadens the visible-light response range of the heterojunction. In addition, in the processes of the PDI-Ala/S-C3N4 photocatalytic degradation reaction, a variety of active species (h+, ·O2-, and H2O2) were produced and accumulated. Therefore, the PDI-Ala/S-C3N4 heterojunction exhibited enhanced photocatalytic performance in the degradation of TC, PNP, and H2O2 production. Under visible-light irradiation, the optimum 30%PDI-Ala/S-C3N4 removed 90% of TC within 90 min. In addition, 30%PDI-Ala/S-C3N4 displayed the highest H2O2 evolution rate of 28.3 μmol·h-1·g-1, which was 2.9 and 1.6 times higher than those of PDI-Ala and S-C3N4, respectively. These results reveal that the all organic photocatalyst comprising PDI-based supramolecular and S-C3N4 can be efficiently applied for the degradation of organic pollutants and production of H2O2. This work not only provides a novel strategy for the design of all organic S-scheme heterojunctions but also provides a new insight and reference for understanding the structure–activity relationship of heterostructure catalysts with effective interface bonding.   相似文献   

12.
构建高效、稳定的异质结光催化剂体系是实现太阳能驱动分解水制氢的有效途径。本研究通过物理混合法将Mn0.2Cd0.8S纳米棒与CoAl LDH纳米片进行耦合,成功制备出一种新型的Mn0.2Cd0.8S@CoAl LDH (MCCA) S型异质结光催化剂。光致发光光谱和光电流测试结果表明,该异质结在内建电场的作用下可以有效地加快Mn0.2Cd0.8S和CoAl LDH界面间光生载流子的分离和电子转移。关键的是,CoAl LDH的引入有效地抑制了光生电子与空穴的复合,从而提高了Mn0.2Cd0.8S的光催化产氢活性。最佳CoAl LDH负载量的MCCA-3在5 h内的产氢量为1177.9 μmol。与单独使用纯Mn0.2Cd0.8S纳米棒和CoAl LDH纳米片相比,这是一个显著的改进。本研究为合理设计用于光催化制氢的S型异质结光催化剂提供了一条简单有效的途径。  相似文献   

13.
The use of semiconductor photocatalysts (CdS, g-C3N4, TiO2, etc.) to generate hydrogen (H2) is a prospective strategy that can convert solar energy into hydrogen energy, thereby meeting future energy demands. Among the numerous photocatalysts, TiO2 has attracted significant attention because of its suitable reduction potential and excellent chemical stability. However, the photoexcited electrons and holes of TiO2 are easily quenched, leading to limited photocatalytic performance. Furthermore, graphene has been used as an effective electron cocatalyst in the accelerated transport of photoinduced electrons to enhance the H2-production performance of TiO2, owing to its excellent conductivity and high charge carrier mobility. For an efficient graphene-based photocatalyst, the rapid transfer of photogenerated electrons is extremely important along with an effectual interfacial H2-production reaction on the graphene surface. Therefore, it is necessary to further optimize the graphene microstructures (functionalized graphene) to improve the H2-production performance of graphene-based TiO2 photocatalysts. The introduction of H2-evolution active sites onto the graphene surface is an effective strategy for the functionalization of graphene. Compared with the noncovalent functionalization of graphene (such as loading Pt, MoSx, and CoSx on the graphene surface), its covalent functionalization can provide a strong interaction between graphene and organic molecules in the form of H2-evolution active sites that are produced by chemical reactions. In this study, carboxyl-functionalized graphene (rGO-COOH) was successfully modified via ring-opening and esterification reactions on the TiO2 surface by using an ultrasound-assisted self-assembly method to prepare a high-activity TiO2/rGO-COOH photocatalyst. The Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) curves revealed the successful covalent functionalization of GO to rGO-COOH by significantly enhanced ―COOH groups in FTIR and increased peak area of carboxyl groups in XPS. A series of characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), XPS, and UV-Vis adsorption spectra, were performed to demonstrate the successful synthesis of TiO2/rGO-COOH photocatalysts. The experimental data for the hydrogen-evolution rate showed that the TiO2/rGO-COOH displayed an extremely high hydrogen-generation activity (254.2 μmol∙h−1∙g−1), which was 2.06- and 4.48-fold higher than those of TiO2/GO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-COOH is ascribed to the carboxyl groups of carboxyl-functionalized graphene, which act as effective hydrogen-generation active sites and enrich hydrogen ions owing to their excellent nucleophilicity that facilitates the interfacial hydrogen production reaction of TiO2. This study provides novel insights into the development of high-activity graphene-supported photocatalysts in the hydrogen-generation field.   相似文献   

14.
Metal-organic frameworks (MOFs) are of significant interest for photocatalysis using visible light, but they are typically limited by the instability and high recombination ratio of photoexcited pairs. Integrating MOFs into an inorganic semiconductor is one of the most widespread methods to promote their activity. In this study, a core-shell structured MOF@TiO2 (NH2-UiO-66@TiO2) was synthesized as an efficient photocatalyst for the degradation of toluene. Pristine NH2-UiO-66 was synthesized by a hydrothermal method as the core, which was then coated with an amorphous TiO2 shell. Compared with pristine NH2-UiO-66 and other samples prepared by the direct mixing of NH2-UiO-66 and TiO2, NH2-UiO-66@TiO2 exhibited a higher degradation rate of toluene. Using NH2-UiO-66@TiO2 as a catalyst, the degradation efficiency of toluene reached 76.7% within 3 h, which is 1.48 times higher than that of NH2-UiO-66. The degradation performance was also stable in four repeated reuse experiments, and the slight deactivation was reactivated after washing with ethanol. A series of characterization methods were used to determine the physicochemical properties of NH2-UiO-66@TiO2, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Using the measured physicochemical properties, the photocatalytic mechanism of NH2-UiO-66@TiO2 was explored. NH2-UiO-66 is an ideal photocatalyst, with visible-light response and a huge specific surface area (914.9 m2·g-1), which is favorable for the utilization of sunlight as well as the absorption of pollutants in indoor air. In addition, a new interface formed between the two components (NH2-UiO-66 and TiO2), which efficiently broaden the light absorption area and enhanced the utilization of photogenerated species. The photogenerated holes and electrons could transfer through the interlayer as soon as they were formed. It is speculated that holes would transfer to the HOMO of NH2-UiO-66, and then combine with H2O molecules to form hydroxyl radicals (·OH). At the same time, more electrons tended to combine with oxygen molecules in the conduction band of TiO2 rather than recombine with holes. Consequently, the recombination rate of electrons and holes decreased, while the quantity of oxygen radicals and hydroxyl radicals increased. Toluene was efficiently oxidized by these two types of radicals. Owing to the outstanding properties mentioned above, the strategy of constructing NH2-UiO-66@TiO2 is considered to be an effective approach. This work may provide new insights into the design of core-shell structured MOF@photocatalysts for the photocatalytic degradation of indoor air pollutants.   相似文献   

15.
Energy crisis has become a serious global issue due to the increasing depletion of fossil fuels; therefore, it is crucial to develop environmentally friendly and renewable energy resources, such as hydrogen (H2), to replace fossil fuels. From this viewpoint, photocatalytic H2 production is considered as one of the most promising technologies. Noble metal platinum (Pt) can be applied as an efficient cocatalyst for improving the H2 production performance of photocatalytic systems; however, its high cost limits its further application. Thus, the development of novel, high-activity, and low-cost cocatalysts for replacing noble metal cocatalysts is of great significance for use in photocatalytic H2 evolution techniques. Herein, we successfully synthesized a Ni2P/graphite-like carbonitride photocatalyst (Ni2P/CN) using a conjugated polymer (SCN)n as precursor for enhanced photocatalytic H2 production under visible light illumination. Various characterization techniques, including optical and photoelectronic chemical tests, were used to investigate the structural composition, morphology, and light adsorption ability of these materials. X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy results showed that Ni2P/CN nanocomposites with good crystal structure were obtained. Scanning electron microscopy and transmission electron microscopy results revealed that the Ni2P/CN samples had a typical two-dimensional layered structure, and the Ni2P nanoparticles were uniformly loaded on the surface of the CN to form a non-noble metal promoter. UV-Vis diffuse reflectance spectra results demonstrated that the loading of Ni2P nanoparticles effectively enhances the adsorption capacity of CN to visible light. Photoluminescence spectroscopy and photocurrent (PL) results suggested that Ni2P loading to CN is beneficial for promoting the migration and separation efficiency of photogenerated carriers. Photocatalytic H2 production was conducted under visible light irradiation with triethanolamine as a sacrificial agent. The results suggest that the Ni2P/CN composite photocatalysts exhibit excellent photocatalytic reduction performance. In particular, the H2 evolution rate of the optimal Ni2P/CN nanocomposite is 623.77 μmol·h-1·g-1, which is higher than that of CN modified by noble metal Pt, i.e., 524.63 μmol·h-1·g-1. In conclusion, Ni2P nanoparticles are homogeneously attached to the surface of CN, and a strong interfacial effect exists between them, thereby forming an electron transfer tunnel that greatly inhibits the recombination of photoinduced carriers and promotes the migration of electrons from CN to Ni2P. In addition, a possible photocatalytic mechanism is proposed based on the experiments and characterizations. This work has profound significance for developing non-noble metal cocatalysts for the substitution of noble metal cocatalysts for high-efficiency photocatalytic H2 evolution.   相似文献   

16.
The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.   相似文献   

17.
Since the pioneering work on polychlorinated biphenyl photodegradation by Carey in 1976, photocatalytic technology has emerged as a promising and sustainable strategy to overcome the significant challenges posed by energy crisis and environmental pollution. In photocatalysis, sunlight, which is an inexhaustible source of energy, is utilized to generate strongly active species on the surface of the photocatalyst for triggering photo-redox reactions toward the successful removal of environmental pollutants, or for water splitting. The photocatalytic performance is related to the photoabsorption, photoinduced carrier separation, and redox ability of the semiconductor employed as the photocatalyst. Apart from traditional and noble metal oxide semiconductors such as P25, bismuth-based compounds, and Pt-based compounds, 2D g-C3N4 is now identified to have enormous potential in photocatalysis owing to the special π-π conjugated bond in its structure. However, some inherent drawbacks of the conventional g-C3N4, including the insufficient visible-light absorption ability, fast recombination of photogenerated electron-hole pairs, and low quantum efficiency, decrease its photocatalytic activity and limit its application. To date, various strategies such as heterojunction fabrication, special morphology design, and element doping have been adopted to tune the physicochemical properties of g-C3N4. Recent studies have highlighted the potential of defect engineering for boosting the light harvesting, charge separation, and adsorption efficiency of g-C3N4 by tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, we summarize cutting-edge achievements related to g-C3N4 modified with classified non-external-caused defects (carbon vacancies, nitrogen vacancies, etc.) and external-caused defects (doping and functionalization) for optimizing the photocatalytic performance in water splitting, removal of contaminants in the gas phase and wastewater, nitrogen fixation, etc. The distinctive roles of various defects in the g-C3N4 skeleton in the photocatalytic process are also summarized. Moreover, the practical application of 2D g-C3N4 in air pollution control is highlighted. Finally, the ongoing challenges and perspectives of defective g-C3N4 are presented. The overarching aim of this article is to provide a useful scaffold for future research and application studies on defect-modulated g-C3N4.   相似文献   

18.
纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。  相似文献   

19.
Two-dimensional photocatalytic materials have potential applications in the fields of environmental purification and energy conversion owing to their rich surface active sites, unique geometric structures, adjustable electronic structures, and good photocatalytic activities. At present, the main two-dimensional photocatalytic materials include metal oxides, metal composite oxides, metal hydroxides, metal sulfides, bismuth-based materials, and non-metallic photocatalytic materials. The absorption of photons in bulk materials or nanoparticles is often limited by the transmittance and reflection at the grain boundary, while the two-dimensional structure can provide a large specific surface area and abundant surface low-coordination atoms to obtain more UV visible light. In addition, the smaller atomic thickness of two-dimensional photocatalytic materials can shorten the carrier migration distance. Thus, in two-dimensional photocatalytic materials, the carriers generated in the interior migrate to the surface faster than that in the bulk materials, which can reduce the recombination of photogenerated carriers and facilitate the photocatalytic reaction. For the surface redox reaction, the two-dimensional structure can provide more abundant surface-active sites to accelerate the reaction process. Additionally, when the thickness is reduced to the atomic scale, the escape energy of atoms is relatively small, thereby increasing the surface defects, which is helpful for the adsorption and activation of target molecules. Thus, the synthesis methods and performance enhancement strategies of two-dimensional photocatalytic materials have been developed rapidly. The former strategies mainly focus on the adjustment of morphology and geometric structure characteristics, which cannot fully meet the design requirements of efficient and stable photocatalysts. The photocatalytic performance and stability can be improved by surface design to construct abundant active sites and adjust the electronic structure. Research on the reaction mechanism of photocatalysis can help us understand the demand for photocatalytic structure characteristics in different reactions, thereby guiding the design of photocatalysts. In this paper, the advances in surface design and electronic structure regulation strategies of two-dimensional photocatalytic materials are reviewed from three aspects: light absorption; charge separation; and active sites, including element doping, heterojunction design, defect construction, single atom modification, and plasmonic metal loading. The effects on the reaction mechanism for typical air pollutant purification by regulating the electronic structure of two-dimensional photocatalytic materials are summarized. Finally, the problems and challenges associated with the development of two-dimensional photocatalytic materials are analyzed and discussed.   相似文献   

20.
可见光驱动的光催化制氢与有机氧化合成相结合由于其环境友好性和可持续性而极具吸引力,它可以在温和的条件下同时产生清洁的氢气燃料和高价值化学品,而无需牺牲剂。半导体材料和金属有机骨架(MOFs)材料由于其性能和优势,在光催化领域得到了广泛的应用。在这项工作中,我们通过静电自组装成功合成了一种名为Cd S/PFC-8的新型有效催化剂。其中,PFC-8作为镍基金属有机骨架,Cd S/PFC-8复合材料作为无贵金属催化剂,在可见光下具有优异的光催化制氢和苯甲醇氧化性能。对Cd S/PFC-8复合材料进行了一系列催化表征。X射线衍射(XRD)和扫描电子显微镜(SEM)结果表明了Cd S/PFC-8复合材料的成功合成。X射线光电子能谱(XPS)表明了Cd S纳米棒与PFC-8之间存在一定的界面相互作用。通过紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)和电化学测试对光电性能进行了表征,表明Cd S/PFC-8复合材料的可见光响应和光催化可行性。对不同催化剂的光催化实验结果进行比较,在可见光下,Cd S/PFC-8复合材料将H2的产生与苯甲醇的选择性氧化耦合,表现出显著的H2产率3376μmol...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号